精英家教网 > 高中数学 > 题目详情
(理)已知函数f(x)=x-
12
ax2-ln(1+x)
,其中a∈R.
(Ⅰ)若x=2是f(x)的极值点,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.
分析:(Ⅰ)f′(x)=
x(1-a-ax)
x+1
,  x∈(-1,+∞)
.令f'(2)=0,能求出a的值.
(Ⅱ)当a=0时,f′(x)=
x
x+1
.故f(x)的单调增区间是(0,+∞);单调减区间是(-1,0).当a>0时,令f'(x)=0,得x1=0,或x2=
1
a
-1
.当0<a<1时,列表讨论f(x)与f'(x)的情况能求出f(x)的单调区间.
(Ⅲ)由(Ⅱ)知 a≤0时,f(x)在(0,+∞)上单调递增,由f(0)=0,知不合题意.当0<a<1时,f(x)在(0,+∞)的最大值是f(
1
a
-1)
,由f(
1
a
-1)>f(0)=0
,知不合题意.当a≥1时,f(x)在(0,+∞)单调递减,可得f(x)在[0,+∞)上的最大值是f(0)=0,符合题意.由此能求出f(x)在[0,+∞)上的最大值是0时,a的取值范围是[1,+∞).
解答:(理)(本小题满分12分)
(Ⅰ)解:f′(x)=
x(1-a-ax)
x+1
,  x∈(-1,+∞)

依题意,令f'(2)=0,解得 a=
1
3

经检验,a=
1
3
时,符合题意.…(4分)
(Ⅱ)解:①当a=0时,f′(x)=
x
x+1

故f(x)的单调增区间是(0,+∞);单调减区间是(-1,0).
②当a>0时,令f'(x)=0,得x1=0,或x2=
1
a
-1

当0<a<1时,f(x)与f'(x)的情况如下:
x (-1,x1 x1 (x1,x2 x2 (x2,+∞)
f'(x) - 0 + 0 -
f(x) f(x1 f(x2
所以,f(x)的单调增区间是(0,
1
a
-1)
;单调减区间是(-1,0)和(
1
a
-1,+∞)

当a=1时,f(x)的单调减区间是(-1,+∞).
当a>1时,-1<x2<0,f(x)与f'(x)的情况如下:
x (-1,x2 x2 (x2,x1 x1 (x1,+∞)
f'(x) - 0 + 0 -
f(x) f(x2 f(x1
所以,f(x)的单调增区间是(
1
a
-1,0)
;单调减区间是(-1,
1
a
-1)
和(0,+∞).
③当a<0时,f(x)的单调增区间是(0,+∞);单调减区间是(-1,0).
综上,当a≤0时,f(x)的增区间是(0,+∞),减区间是(-1,0);
当0<a<1时,f(x)的增区间是(0,
1
a
-1)
,减区间是(-1,0)和(
1
a
-1,+∞)

当a=1时,f(x)的减区间是(-1,+∞);
当a>1时,f(x)的增区间是(
1
a
-1,0)
;减区间是(-1,
1
a
-1)
和(0,+∞).
…(10分)
(Ⅲ)由(Ⅱ)知 a≤0时,f(x)在(0,+∞)上单调递增,由f(0)=0,知不合题意.
当0<a<1时,f(x)在(0,+∞)的最大值是f(
1
a
-1)

f(
1
a
-1)>f(0)=0
,知不合题意.
当a≥1时,f(x)在(0,+∞)单调递减,
可得f(x)在[0,+∞)上的最大值是f(0)=0,符合题意.
所以,f(x)在[0,+∞)上的最大值是0时,a的取值范围是[1,+∞).…(12分)
点评:本题考查利用导数求闭区间上函数最值的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网精英家教网(理)已知函数f(x)=
ln(2-x2)
|x+2|-2

(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=
sin2x-(a-4)(sinx-cosx)+a
的定义域为{x|2kπ≤x≤2kπ+
π
2
,k∈Z}
,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普陀区三模)(理)已知函数f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是
(2,2012)
(2,2012)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普陀区三模)(理)已知函数f(x)=
ln(2-x2)|x+2|-2

(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)右图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•嘉定区一模)(理)已知函数f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)图象上两点.
(1)若x1+x2=1,求证:y1+y2为定值;
(2)设Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn关于n的解析式;
(3)对(2)中的Tn,设数列{an}满足a1=2,当n≥2时,an=4Tn+2,问是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
对一切n∈N*都成立?若存在,求出角α的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案