精英家教网 > 高中数学 > 题目详情
已知F是抛物线的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为 (  )
A.B.1C.D.
C

试题分析:设,则由抛物线定义得,因为
所以线段AB的中点到y轴的距离为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:,点A、B在抛物线C上.

(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N.
(1)求抛物线方程及其焦点坐标;
(2)已知O为原点,求证:∠MON为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.

(1)求证:MA⊥MB;
(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=2px(p>0)的焦点为F,P、Q是抛物线上的两个点,若△PQF是边长为2的正三角形,则p的值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为抛物线的焦点,为该抛物线上三点,若,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线的焦点作直线交抛物线两点,若A到抛物线的准线的距离为4,则          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.

(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=8x的焦点到准线的距离是(  )
A.1B.2C.4D.8

查看答案和解析>>

同步练习册答案