精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)设点分别为曲线与曲线上的任意一点,求的最大值;

2)设直线为参数)与曲线交于两点,且,求直线的普通方程.

【答案】(1)7;(2)

【解析】

(1)将曲线都化成普通方程后,可知的最大值是圆心距加上两个圆的半径;

(2) 将直线的参数方程代入中后,利用韦达定理以及参数的几何意义可得弦长,代入已知,可解得斜率,再由点斜式可得直线的方程.

解:(1)由,所以曲线的普通方程为,圆心,半径.

曲线的直角坐标方程为,圆心,半径.

.

2)将直线的参数方程代入中,得

整理得

.

两点对应的参数分别为,则.

及参数的几何意义,

解得,满足,所以,

∴直线的斜率为,

由点斜式得,

∴直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(其中为自然对数的底数)

1)若,且上是增函数,求的最小值;

2)设,若对任意恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面为矩形,侧面为梯形,.

1)求证:

2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求的取值范围;

(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学小组到进行社会实践调查,了解到某公司为了实现1000万元利润目标,准备制定激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下的函数模型,其中符合公司要求的是(参考数据:( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,某窑洞窗口形状上部是圆弧,下部是一个矩形,圆弧所在圆的圆心为O,经测量米,米,,现根据需要把此窑洞窗口形状改造为矩形,其中EF在边上,GH在圆弧.,矩形的面积为S.

1)求矩形的面积S关于变量的函数关系式;

2)求为何值时,矩形的面积S最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)求函数上的值域;

3)若存在,使得成立,求的最大值.(其中自然常数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,其焦点为为过焦点的抛物线的弦,过分别作抛物线的切线,设相交于点

1)求的值;

2)如果圆的方程为,且点在圆内部,设直线相交于两点,求的最小值.

查看答案和解析>>

同步练习册答案