精英家教网 > 高中数学 > 题目详情
20.“x=2kπ+$\frac{π}{4}$(k∈Z)”是“tanx=1”成立的(  )
A.充分不必要条件.B.必要不充分条件.
C.充要条件.D.既不充分也不必要条件.

分析 根据正切函数的定义,分别判断当x=2kπ+$\frac{π}{4}$(k∈Z)时,tanx=1是否成立及tanx=1时,x=2kπ+$\frac{π}{4}$(k∈Z)是否成立,进而根据充要条件的定义可得答案

解答 解:当x=2kπ+$\frac{π}{4}$(k∈Z)时,tanx=1成立
当tanx=1时,x=2kπ+$\frac{π}{4}$或x=2kπ+$\frac{5π}{4}$(k∈Z)
故x=2kπ+$\frac{π}{4}$(k∈Z)是tanx=1成立的充分不必要条件
故选:A.

点评 本题考查的知识点是正切函数的定义及充要条件的定义,其中根据正切函数的定义判断出x=2kπ+$\frac{π}{4}$(k∈Z)⇒tanx=1与tanx=1⇒x=2kπ+$\frac{π}{4}$(k∈Z)的真假是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4x-a•2x+1(-1≤x≤2)的最小值为g(a).
(1)求g(2)的值;
(2)求g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x=1是f(x)=2x+$\frac{b}{x}$+lnx的一个极值点.
(1)求b的值,并指出x=1是极大值点还是极小值点;
(2)设g(x)=f(x)-$\frac{3}{x}$($\frac{1}{e}$≤x≤e2),问:过点(2,5)可作几条直线与曲线y=g(x)相切?说明之.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的值域.
(1)f(x)=$\frac{2}{x+1}$;
(2)f(x)=$\frac{2}{x+1}$(x<-2);
(3)f(x)=$\frac{x}{x+1}$;
(4)f(x)=$\frac{x}{x+1}$(x≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log${\;}_{\frac{1}{2}}$(x2-2ax+3).
(1)若函数f(x)的定义域为(-∞,1)∪(3,+∞),求实数a的值;
(2)若函数f(x)的定义域为R,值域为(-∞,-1],求实数a的值;
(3)若函数f(x)在(-∞,1]上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=f(x)满足:f(-2)>f(-1),f(-1)<f(0),则下列结论正确的是(  )
A.函数y=f(x)在区间[-2,-1]上单调递减,在区间[-1,0]上单调递增
B.函数y=f(x)在区间[-2,-1]上单调递增,在区间[-1,0]上单调递减
C.函数y=f(x)在区间[-2,0]上的最小值是f(-1)
D.以上三个结论都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知4f(x)-5f($\frac{1}{x}$)=2x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线y=x3-x2在M(x0,y0)(x>0)处切线的斜率为8,则此切线方程为.(  )
A.8x-y-20=0B.8x-y+12=0C.8x-y-24=0D.8x-y-12=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|-2≤x≤5},B={x|m≤x≤2m-1},A∩B=B,求m的取值范围.

查看答案和解析>>

同步练习册答案