精英家教网 > 高中数学 > 题目详情
10.已知a+b<0且a>0则(  )
A.a2<b2<-abB.b2<-ab<a2C.a2<-ab<b2D.-ab<b2<a2

分析 根据不等式的关系进行判断即可.

解答 解:∵a+b<0且a>0,
∴b<-a<0,
则a2<b2,-ab>a2
b2>-ab,
综上a2<-ab<b2
故选:C.

点评 本题主要考查不等关系的判断,根据不等式的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数y=$\frac{1}{tanx-1}$的定义域为{x|x≠kπ+$\frac{π}{4}$,且x≠kπ+$\frac{π}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,1),则$\overrightarrow{a}$+$\overrightarrow{b}$=(-2,4),$\overrightarrow{a}$•$\overrightarrow{b}$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知O是锐角△ABC的外心,AB=6,AC=10.若$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$,且2x+10y=5,则cos∠BAC=(  )
A.$\frac{1}{4}$B.$-\frac{1}{3}$C.$-\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-4x,
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)在区间[t,t+1],(t≥0)上的最小值g(t)的最小值;
(Ⅲ)求不等式f(x+2)<5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合U={1,3,5,7},M={x|(x-1)(x-3)=0},则CUM=(  )
A.{1,3}B.{1,5}C.{5,7}D.{1,3,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在等差数列{an}中,a1=13,前n项和为Sn,且S3=S11,求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若数列{an}是首项为1,公比为-$\sqrt{2}$的等比数列,则a4等于(  )
A.-8B.-2$\sqrt{2}$C.2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知n∈N*,在(x+2)n的展开式中,第二项系数是第三项系数的$\frac{1}{5}$.
(1)求n的值;
(2)求展开式中二项式系数最大的项;
(3)若(x+2)n=a0+a1(x+1)+a2(x+1)2+…+an(x+1)n,求a0+a1+…+an的值.

查看答案和解析>>

同步练习册答案