精英家教网 > 高中数学 > 题目详情
设函数f(x)=xsinx在x=x0处取得极值,则(1+x02)cos2x0的值为(  )
A.0B.1C.2D.3
f(x)=xsinx则f′(x)=sinx+xcosx=0
解得tanx=-x,
∴x02=tan2x0
∴(x02+1)cos2x0=(tan2x0+1)cos2x0=
cos2x0+sin2x0
cos2x0
×cos2x0
=1
故答案为:1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知一块半径为r的残缺的半圆形材料ABC,O为半圆的圆心,OC=
1
2
r
,残缺部分位于过点C的竖直线的右侧.现要在这块材料上截出一个直角三角形,有两种设计方案:如图甲,以BC为斜边;如图乙,直角顶点E在线段OC上,且另一个顶点D在
AB
上.要使截出的直角三角形的面积最大,应该选择哪一种方案?请说明理由,并求出截得直角三角形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x2+
2
x
,g(x)=(
1
2
)x+m
,若?x1∈[1,2],?x2∈[-1,1],使得f(x1)≥g(x2),则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+2(a∈R)且曲线y=f(x)在点(2,f(2))处切线斜率为0.
求:(Ⅰ)a的值;
(Ⅱ)f(x)在区间[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1)上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1-x
ax
+lnx

(Ⅰ)若函数f(x)在[1,+∞)上是增函数,求正实数a的取值范围;
(Ⅱ)若a=1,k∈R且k<
1
e
,设F(x)=f(x)+(k-1)lnx,求函数F(x)在[
1
e
,e]
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知点,点在曲线上,若阴影部分面积与面积相等,则=________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则的大小关系为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案