精英家教网 > 高中数学 > 题目详情

如图,圆C:x2+y2-2x-8=0内有一点P(2,2),过点P作直线l交圆于A,B两点.

(1)当直线l经过圆心C时,求直线l的方程;

(2)当弦AB被点P平分时,写出直线l程;

(3)当直线l倾斜角为45°时,求△ABC的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线x2=2py(p>0).抛物线上的点M(m,1)到焦点的距离为2
(1)求抛物线的方程和m的值;
(2)如图,P是抛物线上的一点,过P作圆C:x2+(y+1)2=1的两条切线交x轴于A,B两点,若△CAB的面积为
3
3
5
,求点P坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M、N(点M在点N的左侧),且|MN|=3,
(Ⅰ)求圆C的方程;
(Ⅱ)过点M任作一条直线与圆O:x2+y2=4相交于两点A、B,连接AN、BN.求证:∠ANM=∠BNM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点F(0,1),直线L:y=-2,及圆C:x2+(y-3)2=1.
(1)若动点M到点F的距离比它到直线L的距离小1,求动点M的轨迹E的方程;
(2)过点F的直线g交轨迹E于G(x1,y1)、H(x2,y2)两点,求证:x1x2 为定值;
(3)过轨迹E上一点P作圆C的切线,切点为A、B,要使四边形PACB的面积S最小,求点P的坐标及S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O:x2+y2=
π
2
 
内的正弦曲线y=sinx与x轴围成的区域记为M(图中阴影部分),随机向圆O内投一个点P,则点P落在区域M内的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知抛物线x2=4y.
(Ⅰ)过抛物线焦点F,作直线交抛物线于M,N两点,求|MN|最小值;
(Ⅱ)如图,P是抛物线上的动点,过P作圆C:x2+(y+1)2=1的切线交直线y=-2于A,B两点,当PB恰好切抛物线于点P时,求此时△PAB的面积.

查看答案和解析>>

同步练习册答案