精英家教网 > 高中数学 > 题目详情

【题目】2017年被称为“新高考元年”,随着上海、浙江两地顺利实施“语数外+3”新高考方案,新一轮的高考改革还将继续在全国推进。辽宁地区也将于2020年开启新高考模式,今年秋季入学 的高一新生将面临从物理、化学、生物、政治、历史、地理等6科中任选三科(共20种选法)作为 自己将来高考“语数外+3 ”新高考方案中的“3”。某地区为了顺利迎接新高考改革,在某学校理科班的200名学生中进行了“学生模拟选科数据”调查,每个学生只能从表格中的20种课程 组合选择一种学习。模拟选课数据统计如下表:

序号

1

2

3

4

5

6

7

组合学科

物化生

物化政

物化历

物化地

物生政

物生历

物生地

人数

20人

5人

10人

10人

10人

15人

10人

序号

8

9

10

11

12

13

14

组合学科

物政历

物政地

物历地

化生政

化生历

化生地

化政历

人数

5人

0人

5人

...

40人

...

...

序号

15

16

17

18

19

20

组合学科

化政地

化历地

生政历

生政地

生历地

政历地

总计

人数

...

...

...

...

...

...

200人

为了解学生成绩与学生模拟选课情之间的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析.

(1)样本中选择组合12号“化生历”的有多少人?样本中选择学习物理的有多少人?

(2)从样本选择学习地理且学习物理的学生中随机抽取3人,求这3人中至少有1人还要学习生物的概率;

【答案】(1)化生历有8人;物理有18人;(2) .

【解析】试题分析:(1)根据分层抽样的原理,抽样比为即可求出组合12化生历的有多少人样本中选择学习物理的有多少人;(2)求出学习地理且学习物理的学生共有5用列举法计算所有的基本事件的个数,即可求出对应的概率.

试题解析(1)化生历有8人;物理有18

(2)学习地理且学习物理的学生共有5人,其中学习生物的有2人记为另外三人记作.

空间为10.

3人中至少有1人还要学习生物9

∴这3人中至少有1人还要学习生物的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】标号为0910瓶矿泉水.

1)从中取4瓶,恰有2瓶上的数字相邻的取法有多少种?

2)把10个空矿泉水瓶挂成如下4列的形式,作为射击的靶子,规定每次只能射击每列最下面的一个(射中后这个空瓶会掉到地下),把10个矿泉水瓶全部击中有几种不同的射击方案?

3)把击中后的矿泉水瓶分送给ABC三名垃圾回收人员,每个瓶子1角钱.垃圾回收人员卖掉瓶子后有几种不同的收入结果?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,讨论的单调性;

(2)若,且对于函数的图象上两点 ,存在,使得函数的图象在处的切线.求证;.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工企业2018年年底投入100万元,购入一套污水处理设备。该设备每年的运转费用是0.5万元,此外,每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元。设该企业使用该设备年的年平均污水处理费用为(单位:万元)

(1)用表示

(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备。则该企业几年后需要重新更换新的污水处理设备。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量=(1x),=(2x+3,-x),xR.

1)若,求x的值;

2)若,求|-|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形与矩形所在平面相互垂直, .

(Ⅰ)求证: 平面

(Ⅱ)求四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若a=0时,求函数的零点;

(2)若a=4时,求函数在区间[2,5]上的最大值和最小值;

(3)当时,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差和患感冒的小朋友人数(/人)的数据如下:

温差

患感冒人数

8

11

14

20

23

26

其中.

(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合的关系;

(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)

参考数据:.参考公式:相关系数:,回归直线方程是 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50岁

80

年龄大于50岁

10

合计

70

100

(1)根据已知数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.

附:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案