精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2-4x+2(a>0)满足:对于任意的x∈[0,m],不等式|f(x)|≤4成立.
(1)若a=3,求m的最大值
(2)若函数y=f(x)在区间[0,m]上的最小值是-3,求a的值
(3)对于给定的正数a,当a为何值时,m最大?并求出这个最大的m.

解:(1)当a=3时,…(2分)
因为函数f(x)对于任意的x∈[0,m],不等式|f(x)|≤4成立
所以m的最大值是方程3x2-4x+2=4的较大根,故…(4分)
(2)因为-3∈[-4,4],所以f(x)=ax2-4x+2区间[0,m]上的最小值是在对称轴处取得,…(7分)
所以,所以,所以…(8分)
(3)因为 ,所以 .…(9分)
①若,即时,m是方程ax2-4x+2=-4的较小根…(11分)
解之得:.…(12分)
②若,即时,所以m是方程ax2-4x+2=-4的较大根,即…(14分)
并且越小,m越大,
故当,即时,m可以取到最大为3
又因为
所以,当且仅当时,m取得最大值3…(16分)
分析:(1)先配方,利用对于任意的x∈[0,m],不等式|f(x)|≤4成立,可知m的最大值是方程3x2-4x+2=4的较大根;
(2)根据函数f(x)对于任意的x∈[0,m],不等式|f(x)|≤4成立,函数y=f(x)在区间[0,m]上的最小值-3∈[-4,4],所以f(x)=ax2-4x+2区间[0,m]上的最小值是在对称轴处取得;
(3))因为 ,所以 ,与-4比较,进行分类讨论,我们就可以求出这个最大的m.
点评:本题考查二次函数的性质,考查配方法解决函数最值问题,问题(3)分类讨论是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案