精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
如图,已知抛物线,过点任作一直线与相交于两点,过点轴的平行线与直线相交于点为坐标原点).

(1)证明:动点在定直线上;
(2)作的任意一条切线(不含轴)与直线相交于点,与(1)中的定直线相交于点,证明:为定值,并求此定值.
(1)详见解析,(2)8.

试题分析:(1)证明动点在定直线上,实质是求动点的轨迹方程,本题解题思路为根据条件求出动点的坐标,进而探求动点轨迹:依题意可设AB方程为,代入,得,即.设,则有:,直线AO的方程为;BD的方程为;解得交点D的坐标为,注意到,则有,因此D点在定直线上.(2)本题以算代征,从切线方程出发,分别表示出的坐标,再化简.设切线的方程为,代入,即,由,化简整理得,故切线的方程可写为,分别令的坐标为,则,即为定值8.
试题解析:(1)解:依题意可设AB方程为,代入,得,即.设,则有:,直线AO的方程为;BD的方程为;解得交点D的坐标为,注意到,则有,因此D点在定直线上.(2)依题设,切线的斜率存在且不等于零,设切线的方程为,代入,即,由,化简整理得,故切线的方程可写为,分别令的坐标为,则,即为定值8.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(1)求曲线C的方程;
(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
(ⅰ)证明:k·kON为定值;
(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分14分)如图在平面直角坐标系中,分别是椭圆的左右焦点,顶点的坐标是,连接并延长交椭圆于点,过点轴的垂线交椭圆于另一点,连接.

(1)若点的坐标为,且,求椭圆的方程;
(2)若,求椭圆离心率的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个酒杯的轴截面是抛物线x2=2y(0≤y<15)的一部分,若在杯內放入一个半径为3的玻璃球,则球的最高点与杯底的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点在原点O,焦点在x轴上的抛物线过点(3,
6
)

(1)求抛物线的标准方程;
(2)若抛物线与直线y=x-2交于A、B两点,求证:kOA•kOB=-4.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:
①曲线C过坐标原点;
②曲线C关于坐标原点对称;
③若点P在曲线C上,则△F1PF2的面积不大于a2
其中,所有正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的三个顶点在抛物线上,为抛物线的焦点,点的中点,
(1)若,求点的坐标;
(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为,定直线的方程为.动圆与圆外切,且与直线相切.
(1)求动圆圆心的轨迹的方程;
(2)直线与轨迹相切于第一象限的点, 过点作直线的垂线恰好经过点,并交轨迹于异于点的点,求直线的方程及的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,短轴端点分别为.
(1)求椭圆的标准方程;
(2)若,是椭圆上关于轴对称的两个不同点,直线轴交于点,判断以线段为直径的圆是否过点,并说明理由.

查看答案和解析>>

同步练习册答案