精英家教网 > 高中数学 > 题目详情

【题目】对于数列为数列是前项和,且.

(1)求数列的通项公式;

(2)令,求数列的前项和.

【答案】(1);2

【解析】试题分析: (1)先根据和项与通项关系,将条件转化为项之间递推关系:,再根据叠加法求数列的通项公式;而求通项公式,需变形构造一个等比数列,这是由于可变形得,然后通过求等比数列通项公式,转化求通项公式,(2)由于,所以利用错位相减法求和,求和时注意错位相减,减式中项的符号变化,合并时项数的确定,最后结果要除以

试题解析:(1))因为,所以

所以

所以数列的通项公式为

,可得

所以数列是首项为,公比为3的等比数列,所以

所以数列的通项公式为

2)由(1)可得

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,讨论函数的单调性;

2)设,当时,若对任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形与等腰直角三角形所在的平面互相垂直,.

1)求直线与平面所成角的正弦值;

2)线段上是否存在点,使平面?若存在,求出;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件至少1名女生与事件全是男生( )

A.是互斥事件,不是对立事件

B.是对立事件,不是互斥事件

C.既是互斥事件,也是对立事件

D.既不是互斥事件也不是对立事件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):

组别

候车时间

人数

2

6

4

2

1

1)估计这60名乘客中候车时间少于10分钟的人数;

2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.

()写出y与x之间的函数关系式;

()从第几年开始,该机床开始盈利(盈利额为正值);

()使用若干年后,对机床的处理方案有两种:

(1)当年平均盈利额达到最大值时,以30万元价格处理该机床;

(2)当盈利额达到最大值时,以12万元价格处理该机床.

请你研究一下哪种方案处理较为合理?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如下表:

1判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;

2现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.

3已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为,求布列及数学期望.

男性公务员

女性公务员

总计

有意愿生二胎

30

15

45

无意愿生二胎

20

25

45

总计

50

40

90

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形,将 沿矩形的对角线 所在的直线进行翻折,在翻折过程中 (  )

A. 存在某个位置,使得直线与直线垂直

B. 存在某个位置,使得直线与直线垂直

C. 存在某个位置,使得直线与直线垂直

D. 对任意位置,三对直线“”,“”,“”均不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.

(1)求椭圆的方程;

(2)是椭圆的左顶点,经过左焦点的直线与椭圆交于两点,求的面积之差的绝对值的最大值.为坐标原点

查看答案和解析>>

同步练习册答案