精英家教网 > 高中数学 > 题目详情
12.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{2x-y≤4}\\{x-y≥0}\end{array}\right.$,则z=x+2y的最小值为2.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y≥2}\\{2x-y≤4}\\{x-y≥0}\end{array}\right.$作出可行域如图,

化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$.
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过A时,直线在y轴上的截距最小,z有最小值为2
故答案为:2.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.直线x-ytanα-5=0(α∈(0,$\frac{π}{4}$))的倾斜角的变化范围是($\frac{π}{4},\frac{π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线l过点A(1,2),且不过第四象限,那么直线l的斜率的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数y=x2+2x(x≥0)的反函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立直角坐标系,将曲线C1$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上所有点的横坐标、纵坐标分别伸长为原来的2和$\frac{1}{2}$后得到曲线C2
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2)已知直线1:ρ(cosθ+2sinθ)=4,点P在曲线C2上,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设y1=40.9,y2=log${\;}_{\frac{1}{2}}$4.3,y3=($\frac{1}{3}$)1.5,则(  )
A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-10|+|x-20|,且满足f(x)<10a(a∈R)的解集不是空集.
(Ⅰ)求实数a的取值范围;
(Ⅱ)求a+$\frac{4}{{a}^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=cos(x+$\frac{π}{6}$).
(1)f($\frac{5π}{2}$)+f($\frac{11π}{3}$)的值;
(2)若f(x)=$\frac{1}{4}$,求sin($\frac{4π}{3}$-x)+4cos2($\frac{2π}{3}$+x)的值;
(3)若x∈(-$\frac{π}{3}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.现有10个数,它们能构成一个以1为首项,-2为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{7}{10}$

查看答案和解析>>

同步练习册答案