精英家教网 > 高中数学 > 题目详情
如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是(  )
A.90°B.60°C.45°D.30°

将其还原成正方体ABCD-PQRS,连接SC,AS,则PBSC,

∴∠ACS(或其补角)是PB与AC所成的角
∵△ACS为正三角形,
∴∠ACS=60°
∴PB与AC所成的角是60°
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知AB与CD为异面线段,CD?平面α,ABα,M、N分别是线段AC与BD的中点,求证:MN平面α.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,AB=1
(1)求异面直线A1B与B1C所成的角;
(2)求证:平面A1BD平面B1CD1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体AC1的棱长为1,连接AC1,交平面A1BD于H,则以下命题中,错误的命题是(  )
A.AC1⊥平面A1BD
B.H是△A1BD的垂心
C.AH=
3
3
D.直线AH和BB1所成角为45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,四棱锥P-ABCD的底面ABCD为直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE平面PAD;
(2)若AP=2AB,求证:BE⊥CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P-ABC中共有(  )个直角三角形.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,ABCD,AB=AD=1,CD=2,DE=4,M为CE的中点.
(Ⅰ)求证:BM平面ADEF:
(Ⅱ)求证:BC⊥平面BDE;
(Ⅲ)求三棱锥C-MBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点△DAB≌△DCB,EA=EB=AB=1,PA=
3
2
,连接CE并延长交AD于F.
(1)求证:AD⊥平面CFG;
(2)求三棱锥P-ABD外接球的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体ABCD-A1B1C1D1的棱长为2,P、Q分别是BC、CD上的动点,且|PQ|=
2
,建立如图所示的坐标系.
(1)确定P、Q的位置,使得B1Q⊥D1P;
(2)当B1Q⊥D1P时,求二面角C1-PQ-A的大小.

查看答案和解析>>

同步练习册答案