精英家教网 > 高中数学 > 题目详情
(2013•宿迁一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
6
3
,一条准线方程为x=
3
6
2

(1)求椭圆C的方程;
(2)设G,H为椭圆上的两个动点,O为坐标原点,且OG⊥OH.
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
分析:(1)设出椭圆的标准方程,利用椭圆C的离心率e=
6
3
,一条准线方程为x=
3
6
2
,建立方程组,求得几何量,即可求椭圆C的标准方程;
(2)①确定G,H的坐标,求得OG,OH的长,即可求△GOH的面积;
②假设存在满足条件的定圆,设圆的半径为R,则OG•OH=R•GH,因为OG2+OH2=GH2,故
1
OG2
+
1
OH2
=
1
R2
,分类讨论可得结论.
解答:解:(1)因为椭圆的离心率e=
6
3
,一条准线方程为x=
3
6
2

所以
c
a
=
6
3
a2
c
=
3
6
2
,a2=b2+c2,…(2分)
解得a=3,b=
3

所以椭圆方程为
x2
9
+
y2
3
=1
. …(4分)
(2)①由
y=
3
x
x2
9
+
y2
3
=1
,解得
x2=
9
10
y2=
27
10
,…(6分)
y=-
3
3
x
x2
9
+
y2
3
=1
x2=
9
2
y2=
3
2
,…(8分)
所以OG=
3
10
5
,OH=
6
,所以
S
 
△GOH
=
3
15
5
.…(10分)
②假设存在满足条件的定圆,设圆的半径为R,则OG•OH=R•GH
因为OG2+OH2=GH2,故
1
OG2
+
1
OH2
=
1
R2

当OG与OH的斜率均存在时,不妨设直线OG方程为:y=kx,与椭圆方程联立,可得xG2=
9
1+3k2
yG2=
9k2
1+3k2

OG2=
9+9k2
1+3k2

同理可得OH2=
9+9k2
3+k2

1
OG2
+
1
OH2
=
4
9
=
1
R2
,∴R=
3
2

当OG与OH的斜率有一个不存在时,可得
1
OG2
+
1
OH2
=
4
9
=
1
R2

故满足条件的定圆方程为x2+y2=
9
4
点评:本题考查椭圆的几何性质,考查标准方程,考查学生分析解决问题的能力,确定椭圆的标准方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宿迁一模)已知函数f(x)=||x-1|-1|,若关于x的方程f(x)=m(m∈R)恰有四个互不相等的实数根x1,x2,x3,x4,则x1x2x3x4的取值范围是
(-3,0)
(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,BC=BB1,D为AB的中点.
(1)求证:BC1⊥平面AB1C;
(2)求证:BC1∥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)若复数z满足iz=-1+
3
i
,其中i是虚数单位,则|z|=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)某商场有四类食品,其中粮食类、植物油类、动物类及果蔬类分别有40种、10种、30种、20 种,现采用分层抽样的方法,从中随机抽取一个容量为20的样本进行食品安全检测,则抽取的动物类食品种数是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)已知某同学五次数学成绩分别是:121,127,123,a,125,若其平均成绩是124,则这组数据的方差是
4
4

查看答案和解析>>

同步练习册答案