精英家教网 > 高中数学 > 题目详情
(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求函数f(x)的解析式
(2)已知函数f(x)满足f(x)=4x2+2x+1.设h(x)=f(x)-mx,若已知函数h(x)在[2,4]上是单调函数,求实数m的取值范围.
分析:(1)利用待定系数法求f(x)的解析式.
(2)根据二次函数的单调性与对称轴之间的关系建立条件关系求m的取值范围即可.
解答:解:(1)∵f(x)是一次函数,
∴设f(x)=ax+b,a≠0,
又函数满足3f(x+1)-2f(x-1)=2x+17,
∴3[a(x+1)+b]-2[a(x-1)+b]=2x+17.
即ax+5a+b=2x+17,
a=2
5a+b=17
,解得a=2,b=7,
∴函数f(x)的解析式为f(x)=2x+7.
(2)∵f(x)=4x2+2x+1.
∴h(x)=f(x)-mx=4x2+(2-m)x+1.
函数h(x)的对称轴为x=-
2-m
2×4
=
m-2
8

要使函数h(x)在[2,4]上是单调函数,
m-2
8
≤2
m-2
8
≥4

即m-2≤16或m-2≥32,
解得m≤18或m≥34.
点评:本题主要考查一次函数解析式的求法以及二次函数的性质,要求熟练掌握二次函数单调性与对称轴之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且2f(1)+3f(2)=3,2f(-1)-f(0)=-1,求f(x)的解析式;
(2)已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下说法正确的是
③④
③④

①lg9•lg11>1.
②用数学归纳法证明“1+a+a2+…+an+1=
1-an+21-a
(n∈N*,a≠1)
”在验证n=1时,左边=1.
③已知f(x)是R上的增函数,a,b∈R,则f(a)+f(b)≥f(-a)+f(-b)的充要条件是a+b≥0.
④用分析法证明不等式的思维是从要证的不等式出发,逐步寻找使它成立的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x)的表达式.
(2)化简求值:
6
1
4
+
382
+0.027-
2
3
×(-
1
3
)-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x)的解析式;
(2)求函数y=5-x+
3x-1
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且f(f(x))=4x+3,求f(x)的解析式;
(2)已知f(
x
+1)=x+2
x
,求f(x);
(3)已知f(x)满足2f(x)+f(
1
x
)
=3x,求f(x).

查看答案和解析>>

同步练习册答案