精英家教网 > 高中数学 > 题目详情

【题目】设数列a1,a2,…,an,…中的每一项都不为0.求证:{an}为等差数列的充要条件是:对任何n∈N+,都有

【答案】见解析

【解析】分析:证明必要性,注意到相邻两项有重复元,考虑构造裂项,而可以帮助构造裂项,于是裂项相消即可证明;证明充分性,注意到相邻两式作差可分别得到,和的关系,然后得到的关系,利用等差数列中项公式可得是等差数列

详解:先证必要性.设数列{an}的公差为d.

若d=0,则所述等式显然成立.

若d≠0,

再证充分性.

依题意

②-①

在上式两端同乘a1an+1an+2,得a1=(n+1)an+1-nan+2.

同理可得a1=nan-(n-1)an+1.

③-④得2nan+1=n(an+2+an),即an+2-an+1=an+1-an,所以{an}是等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于定义域相同的函数,若存在实数使,则称函数是由“基函数”生成的.

(1)若函数是“基函数”生成的,求实数的值;

(2)试利用“基函数”生成一个函数,且同时满足:①是偶函数;②在区间上的最小值为.求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A中任意两数之和不能被5整除,则的最大值为(

A. 17B. 18C. 15D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a(cos2ωxsin2ωxsinωx)b(2cosωx),设函数f(x)a·b(xR)的图象关于直线x对称,其中ω为常数,且ω(01)

(1)求函数f(x)的最小正周期和单调递增区间;

(2)若将yf(x)图象上各点的横坐标变为原来的,再将所得图象向右平移个单位,纵坐标不变,得到yh(x)的图象,若关于x的方程h(x)k0上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AEBF所成角的余弦值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函数y=f(x)存在与直线2x﹣y=0垂直的切线,求实数a的取值范围;
(Ⅱ)设g(x)=f(x)+ ,若g(x)有极大值点x1 , 求证: >a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若F(x)=f[f(x)+1]+m有两个零点x1 , x2 , 则x1x2的取值范围是(
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,ABC﹣A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值为 ,求三棱锥C1﹣A1CD的体积.

查看答案和解析>>

同步练习册答案