【题目】已知平行四边形中,,为的中点,且△是等边三角形,沿把△折起至的位置,使得.
(1)是线段的中点,求证:平面;
(2)求证:;
(3)求点到平面的距离.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
试题分析:(1)取的中点,连结、,可证,且,结合条件可得四边形为平行四边形,所以,由线面平行的判定定理即可得到平面;(2)由折叠前图形可得,在四棱锥中,即有,由余弦定理和勾股定理可得,从而证得平面,由线面垂直的性质可证得结论;(3)设点到平面的距离为,进行定体积变换即可求得点到平面的距离.
试题解析:证明:(1)取的中点,连结、,
因为为的中点,故,且,
又,且
所以四边形为平行四边形,,
又平面,平面,故平面.
(2)折叠前,,,即,
在四棱锥中,即有,
在△中,,,由余弦定理得,
又,,由勾股定理的逆定理,得,,
又,从而平面,
平面,得.
(3)由(2)知,平面,
设点到平面的距离为,则由,
得,,
解得.
科目:高中数学 来源: 题型:
【题目】某校高一(1)班有男同学45名,女同学15名,老师按照分层抽样的方法抽取4人组建了一个课外兴趣小组.
(I)求课外兴趣小组中男、女同学的人数;
(II)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是从小组里选出一名同学做实验,该同学做完后,再从小组内剩下的同学中选出一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(III)在(II)的条件下,第一次做实验的同学A得到的实验数据为38,40,41,42,44,第二次做实验的同学B得到的实验数据为39,40,40,42,44,请问哪位同学的实验更稳定?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).
(1) 求向量b+c的模的最大值;
(2) 若α=,且a⊥(b+c),求cos β的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(ax2-x+1)(a>0,a≠1).
(1) 若a=,求函数f(x)的值域.
(2) 当f(x)在区间上为增函数时,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:某污水处理厂要在一个矩形污水处理池()的池底水平铺设污水净化管道(是直角顶点)来处理污水,管道越长污水净化效果越好,设计要求管道的的接口是的中点,分别落在线段上。已知米,米,记.
(1)试将污水净化管道的长度表示为的函数,并写出定义域;
(2)若,求此时管道的长度;
(3)当取何值时,污水净化效果最好?并求出此时管道的长度。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知是定义在 上的奇函数,且,当,时,有成立.
(Ⅰ)判断在 上的单调性,并加以证明;
(Ⅱ)若对所有的恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数;
(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数(Air Quality Index,简称)是定量描述空气质量状况的指数,空气质量按照大小分为六级,为优;为轻度污染;为中度污染;为重度污染;为严重污染.一环保人士记录去年某地某月10天的的茎叶图如右.
(1)利用该样本估计该地本月空气质量优良()的天数;(按这个月总共30天计算)
(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为,求的概率分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五棱锥中,平面平面,且.
(1)已知点在线段上,确定的位置,使得平面;
(2)点分别在线段上,若沿直线将四边形向上翻折,与恰好重合,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com