精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的个数有_________

(1)已知变量满足关系,则正相关;(2)线性回归直线必过点

(3)对于分类变量的随机变量越大说明“有关系”的可信度越大

(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数的值越大,说明拟合的效果越好.

【答案】3个

【解析】

直接利用线性回归直线的相关理论知识的应用求出结果.

1)已知变量xy满足关系y=-2x+3,则xy正相关;应该是:xy负相关.故错误.
2)线性回归直线必过点,线性回归直线必过中心点.故正确.
3)对于分类变量AB的随机变量越大说明“AB有关系的可信度越大.
根据课本上有原句,故正确.
4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数R2的值越大,说明拟合的效果越好.故正确,根据课本上有原句.
故填3个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且两焦点与短轴的一个顶点的连线构成等腰直角三角形.

Ⅰ)求椭圆的方程;

Ⅱ)过的直线交椭圆于两点,试问:是否存在一个定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.

(Ⅰ)理论上,小球落入4号容器的概率是多少?

(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,且对任意正整数都成立,数列的前项和为.

(1)若,且,求

(2)是否存在实数k,使数列是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k的值;若不存在,请说明理由;

(3)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】俗话说三个臭皮匠,顶个诸葛亮,从数学角度解释这句话的含义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,得到如图所示的频率分布直方图.

(Ⅰ)求的值;

(Ⅱ)记表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于分”,估计的概率;

(Ⅲ)在抽取的名学生中,规定:比赛成绩不低于分为“优秀”,比赛成绩低于分为“非优秀”.请将下面的列联表补充完整,并判断是否有的把握认为“比赛成绩是否优秀与性别有关”?

优秀

非优秀

合计

男生

女生

合计

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下

年龄

支持“延迟退休”的人数

15

5

15

28

17

(1)由以上统计数据填列联表并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异

45岁以下

45岁以上

总计

支持

不支持

/td>

总计

(2)若以45岁为分界点从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人

①抽到1人是45岁以下时求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

(Ⅰ)求图中的值,并估计该班期中考试数学成绩的众数;

(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.

(1)求这4000名考生的半均成绩(同一组中数据用该组区间中点作代表);

2)由直方图可认为考生考试成绩z服从正态分布,其中分别取考生的平均成绩和考生成绩的方差,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?

3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为,求.(精确到0.001

附:

,则

.

查看答案和解析>>

同步练习册答案