【题目】下列说法正确的个数有_________
(1)已知变量和满足关系,则与正相关;(2)线性回归直线必过点 ;
(3)对于分类变量与的随机变量,越大说明“与有关系”的可信度越大
(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数的值越大,说明拟合的效果越好.
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且两焦点与短轴的一个顶点的连线构成等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过的直线交椭圆于,两点,试问:是否存在一个定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.
(Ⅰ)理论上,小球落入4号容器的概率是多少?
(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,,且对任意正整数都成立,数列的前项和为.
(1)若,且,求;
(2)是否存在实数k,使数列是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k的值;若不存在,请说明理由;
(3)若,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,,,,,,得到如图所示的频率分布直方图.
(Ⅰ)求的值;
(Ⅱ)记表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于分”,估计的概率;
(Ⅲ)在抽取的名学生中,规定:比赛成绩不低于分为“优秀”,比赛成绩低于分为“非优秀”.请将下面的列联表补充完整,并判断是否有的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | |||
女生 | |||
合计 |
参考公式及数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 | |||||
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | /td> | ||
总计 |
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.
②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求图中的值,并估计该班期中考试数学成绩的众数;
(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.
(1)求这4000名考生的半均成绩(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生考试成绩z服从正态分布,其中分别取考生的平均成绩和考生成绩的方差,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?
(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为,求.(精确到0.001)
附:①;
②,则;
③.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com