精英家教网 > 高中数学 > 题目详情

【题目】双曲线 的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.
(1)若l的倾斜角为 是等边三角形,求双曲线的渐近线方程;
(2)设 ,若l的斜率存在,且|AB|=4,求l的斜率.

【答案】
(1)

解:设

由题意,

因为 是等边三角形,所以

,解得

故双曲线的渐近线方程为


(2)

解:由已知,

,直线

,得

因为 与双曲线交于两点,所以 ,且

,得

解得 ,故 的斜率为


【解析】(1)设 .根据 是等边三角形,得到 ,解得 .(2)设 ,直线 与双曲线方程联立,得到一元二次方程,根据 与双曲线交于两点,可得 ,且 .由|AB|=4得出 的方程求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某工厂两车间工人掌握某技术情况,现从这两车间工人中分别抽查名和名工人,经测试,将这名工人的测试成绩编成的茎叶图若成绩在以上(包括)定义为“良好,成绩在以下定义为“合格”。已知车间工人的成绩的平均数为车间工人的成绩的中位数为.

(1)求,的值

(2)求车间工人的成绩的方差;

(3)在这名工人中,用分层抽样的方法从 “良好”和“及格”中抽取再从这人中选人,求至少有一人为“良好”的概率

参考公式:方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中)的图象与x轴的相邻两个交点之间的距离为,且图象上一个最高点为

(1)的解析式;

(2),求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形, 平面,点 分别为 的中点,且 .

(1)证明: 平面

(2)设直线与平面所成角为,当内变化时,求二面角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 点D在椭圆上.DF1⊥F1F2 =2 ,△DF1F2的面积为

(1)求椭圆的标准方程;
(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知被直线 分成面积相等的四个部分,且截轴所得线段的长为2. 

(1)求的方程;

(2)若存在过点的直线与相交于 两点,且点恰好是线段的中点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,锐角和钝角的终边分别与单位圆交于两点.

(Ⅰ)如果点纵坐标分别为,求

(Ⅱ)若轴上异于的点,且,求点横坐标的取值范围.

查看答案和解析>>

同步练习册答案