精英家教网 > 高中数学 > 题目详情
(2012•临沂二模)给出下列四个结论:
①“若am2<bm2,则a<b”的逆命题是真命题;
②设x,y∈R,则“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件;
③函数y=loga(x+1)+1(a>0且a≠1)的图象必过点(0,1);
④已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0.4,则P(ξ>2)=0.2.
其中正确结论的序号是
②③
②③
.(填上所有正确结论的序号)
分析:①先写出命题:“若am2<bm2,则a<b”的逆命题,再判断其真假即可;②由x≥2且y≥2,可得x2≥4,y2≥4,再进行判断命题之间的关系;③根据函数y=loga x (a>1)的图象必过定点(0,1),由此可得函数y=loga(x+1)+1(a>1)的图象必过的定点.④画出正态分布N(0,σ2)的密度函数的图象,由图象的对称性可得结果.
解答:解:对于①,“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”,当m=0时,是假命题.故①错
②:∵x≥2且y≥2,
∴x2≥4,y2≥4,∴x2+y2≥8⇒x2+y2≥4,
若x2+y2≥4,则推不出x≥2且y≥2,例如当x=2,y=1时,有x2+y2≥5≥4,
∴“x≥2且y≥2”是“x2+y2≥4”的充分不必要条件,
故答案为充分不必要条件.②正确;
③:由于函数y=loga x (a>1)的图象必过定点(0,1),
故函数y=loga(x+1)+1(a>1)的图象必过定点(0,1),正确;
④:由随机变量ξ服从正态分布N(0,σ2)可知正态密度曲线关于y轴对称,
而P(-2≤x≤0)=0.4,
∴P(-2≤x≤2)=0.8
则P(ξ>2)=
1
2
(1-P(-2≤x≤2))=0.1,故④错.
故答案为:②③.
点评:本题考查四种命题的形式、充要条件、正态分布曲线的特点及曲线所表示的意义、考查对数函数的单调性和特殊点.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•临沂二模)在圆x2+y2=4上任取一点P,过点P作x轴的垂线段,D为垂足,点M在线段PD上,且|DP|=
2
|DM|,点P在圆上运动.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)过定点C(-1,0)的直线与点M的轨迹交于A、B两点,在x轴上是否存在点N,使
NA
NB
为常数,若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直线y=0,x=a(0<a≤1)和曲线y=x3围成的曲边三角形的平面区域,若向区域Ω上随机投一点P,点P落在区域A内的概率是
1
64
,则a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)若某程序框图如图所示,则输出的p的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)若纯虚数z满足(2-i)z=4-bi,(i是虚数单位,b是实数),则b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)已知命题p:?x∈[1,2],x2-a≥0,命题q:?x∈R.x2+2ax+2-a=0,若“p且q”为真命题,则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案