精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥中,底面是平行四边形,平面中点,点在棱上移动.

(1)若,求证:

(2)若,当点中点时,求与平面所成角的大小.

【答案】1)见解析;(2.

【解析】

1)先证明平面,得到后可证平面,从而得到要证明的线线垂直.

2)连接,过的垂线,垂足为,可证明与平面所成角,利用解直角三角形的方法可求的大小.

1)因为四边形为平行四边形,所以,因为,故.

因为平面平面,故

因为,所以平面.

因为平面,所以.

因为中点,故.

因为,所以平面,而平面,故.

2)连接,故的垂线,垂足为.

因为平面平面,故,同理.

中,因为,故.

中,,故.

,故.

中,,故.

所以,所以,同理.

因为,所以平面.

因为平面,故平面平面.

因为平面,平面平面

所以平面,故与平面所成角,

中,,故

所以与平面所成角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形,四边形为矩形,的中点.

1)求证:平面

2)二面角的大小可以为吗?若可以求出此时的值,若不可以,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为矩形,是以为直角的等腰直角三角形,平面平面

(Ⅰ)证明:平面平面

(Ⅱ)为直线的中点,且,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过的直线与椭圆相交于两点,且与轴相交于.

1)若,求直线的方程;

2)设关于轴的对称点为,证明:直线轴上的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“挑战不可能”的电视节目上,甲、乙、丙三个人组成的解密团队参加一项解密挑战活动,规则是由密码专家给出题目,然后由个人依次出场解密,每人限定时间是分钟内,否则派下一个人.个人中只要有一人解密正确,则认为该团队挑战成功,否则挑战失败.根据甲以往解密测试情况,抽取了甲次的测试记录,绘制了如下的频率分布直方图.

1)若甲解密成功所需时间的中位数为,求的值,并求出甲在分钟内解密成功的频率;

2)在“挑战不可能”节目上由于来自各方及自身的心理压力,甲,乙,丙解密成功的概率分别为,其中表示第个出场选手解密成功的概率,并且定义为甲抽样中解密成功的频率代替,各人是否解密成功相互独立.

求该团队挑战成功的概率;

该团队以从小到大的顺序按排甲、乙、丙三个人上场解密,求团队挑战成功所需派出的人员数目的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱柱中,边的中点..

1)证明:平面

2)若中点且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆C,椭圆E)的右顶点A在圆C上,右准线与圆C相切.

1)求椭圆E的方程;

2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,其中的一个极值点,且.

1)讨论的单调性

2)求实数a的值

3)证明

查看答案和解析>>

同步练习册答案