精英家教网 > 高中数学 > 题目详情

【题目】已知中心在原点 ,焦点在 轴上,离心率为 的椭圆过点
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与 轴的非负半轴交于点 ,过点 作互相垂直的两条直线,分别交椭圆于点 两点,连接 ,求 的面积的最大值.

【答案】解:(Ⅰ)由题意可设椭圆方程为 ,则 ,故
所以,椭圆方程为
(Ⅱ)由题意可知,直线 的斜率存在且不为o.
故可设直线 的方程为 ,由对称性,不妨设
,消去
,将式子中的 换成 ,得:



,则
,取等条件为
,解得 时, 取得最大值
【解析】(1)根据题意结合已知条件利用椭圆的基本性质即可求出a、b的值。(2)根据题意首先判断出直线的斜率是存在的进而可设出直线的方程,然后联立直线与椭圆的方程消元求出弦长的代数式,整理化简借助基本不等式求出最大值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC的外接圆半径为1, ,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线 的参数方程为 为参数),点 是曲线 上的一动点,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线 的方程为 .
(Ⅰ)求线段 的中点 的轨迹的极坐标方程;
(Ⅱ)求曲线 上的点到直线 的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是( )
A.若随机变量 服从正态分布 ,则
B.若 组数据 的散点都在 上,则相关系数
C.若随机变量 服从二项分布: , 则
D. 的充分不必要条件;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)讨论 的单调性;
(2)若 有两个极值点 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在 中, . 分别是边 上的点,且 .现将 沿直线 折起,形成四棱锥 ,则此四棱锥的体积的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(Ⅰ)当 时,求不等式 的解集;
(Ⅱ)若 的解集包含 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱 和一个正四棱锥 组合而成,

(Ⅰ)证明:平面 平面
(Ⅱ)求正四棱锥 的高 ,使得二面角 的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的定义域为 ,如果 ,使 为常数)成立,则称函数 上的均值为 .给出下列四个函数:① ;② ;③ ;④ .则其中满足在其定义域上均值为2的函数是

查看答案和解析>>

同步练习册答案