精英家教网 > 高中数学 > 题目详情
已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以为边的平行四边形的面积;
(2)若|a|=,且a分别与垂直,求向量a的坐标.
(1);(2) a=(1,1,1),或a=(-1,-1,-1).

试题分析:(1)由点的坐标可得坐标,进而求得模长,及夹角余弦,可利用同角间基本关系式求得夹角正弦,以为边的平行四边形的面积,应该是以为边的三角形面积的二倍,利用三角形面积公式可求得;(2)设,由两向量垂直坐标满足的关系式得关于的方程组,解方程可得向量a的坐标.
解:(1)由题意可得:
,  4分
,∴以为边的平行四边形的面积为
.     6分
(2)设a=(x,y,z),
由题意得
解得
∴a=(1,1,1),或a=(-1,-1,-1)            12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角A­PB­D的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面平面.
(1)证明:平面;
(2)求二面角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,底面BCFE是梯形,EF//BC,又EF平面AEB,AEEB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB//平面DEG;
(2)求证:BDEG;
(3)求二面角C—DF—E的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形与梯形所在的平面互相垂直,的中点.
(1)求证:∥平面
(2)求证:平面平面
(3)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中点。
(1)求证:AC⊥平面BDE;
(2)若直线PA与平面PBC所成角为30°,求二面角P-AD-C的正切值;
(3)求证:直线PA与平面PBD所成的角φ为定值,并求sinφ值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ABC=,∠BAC,AD是BC上的高,沿AD把△ABD折起,使∠BDC

(1)证明:平面ADB⊥平面BDC;
(2)设E为BC的中点,求夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的几何体中,面为正方形,面为等腰梯形,,且平面平面
(1)求与平面所成角的正弦值;
(2)线段上是否存在点,使平面平面
证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面四边形中,的中点,
.将此平面四边形沿折成直二面角
连接,设中点为

(1)证明:平面平面
(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由.
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案