精英家教网 > 高中数学 > 题目详情
某电信部门规定:拨打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话不足1分钟时按1分钟计),试设计一个计算通话费用的算法.要求:
(1)画出程序框图;
(2)编写程序.
考点:设计程序框图解决实际问题,伪代码
专题:算法和程序框图
分析:本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中物品的托运费用计算规则,然后可根据分类标准,设置两个判断框的并设置出判断框中的条件,再由各段的输出,确定判断框的“是”与“否”分支对应的操作,由此即可画出流程图,再编写满足题意的程序.
解答: 解:(1)程序框图如下:

(2)程序如下:
Input t
If t<=3 then
  c=0.2
 Else
  c=0.2+0.1*(t-3)
End if
Print c
End
点评:本题考查的知识点是算法程序框图,伪代码,编写程序解决分段函数问题,其中根据算法步骤画出程序框图,熟练掌握各种框图对应的语句是解答本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

判断函数y=
1
x
+x在区间[-2,-1)上的单调性,并用定义证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
, x≥0
(
1
2
)x, x<0
,则f(f(-2))=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线4x2-3y2=12的焦距等于(  )
A、2
B、4
C、
7
D、2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
,-2),
b
=(2sinxcosx,cos2x-
1
2
),函数f(x)=
a
b

(Ⅰ)若f(x)=0,求x的值.
(Ⅱ)当x∈[0,π]时,求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3mx2+nx+5m,在x=-1处有极值0;
(Ⅰ)求m,n的值;
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m2-3m+3)•xm+1为偶函数,则m=(  )
A、1B、2C、1或2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2lnx-x2的极值点为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax3+x+1在x=-1处有极值,则a=
 

查看答案和解析>>

同步练习册答案