精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)
(1)求证:M为PB的中点;
(2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.

【答案】
(1)

证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM,

∵PD∥平面MAC,PD平面PBD,平面PBD∩平面AMC=OM,

∴PD∥OM,则 ,即M为PB的中点;


(2)

解:取AD中点G,

∵PA=PD,∴PG⊥AD,

∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,

∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,

由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.

以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,

由PA=PD= ,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0, ),C(2,4,0),B(﹣2,4,0),M(﹣1,2, ),

设平面PBD的一个法向量为

则由 ,得 ,取z= ,得

取平面PAD的一个法向量为

∴cos< >= =

∴二面角B﹣PD﹣A的大小为60°;


(3)

解: ,平面PAD的一个法向量为

∴直线MC与平面BDP所成角的正弦值为|cos< >|=| |=| |=


【解析】(1.)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;
(2.)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;
(3.)求出 的坐标,由 与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆 + =1(a>b>0)的左焦点为F,右顶点为A,离心率为 .已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为 ,求直线AP的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,FH分别是正方体ABCDA1B1C1D1的棱CC1AA1的中点,棱长为,

(1)求证:平面BDF∥平面B1D1H.

(2)求正方体外接球的表面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是不共面的三个向量,则能构成一个基底的一组向量是(  )

A. 2+2 B. 2+2

C. ,2 D. +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出的S值为(  )

A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=,则异面直线AB1和BC1所成角的正弦值为(  )

A. 1 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在同一个平面内,向量 的模分别为1,1, 的夹角为α,且tanα=7, 的夹角为45°.若 =m +n (m,n∈R),则m+n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD,PD⊥底面ABCD,且底面ABCD为正方形,PD=DC=2,E,F,G分别是AB,PB,CD的中点.

(1)求证:EF⊥DC;

(2)求证:GF∥平面PAD;

(3)求点G到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.

查看答案和解析>>

同步练习册答案