精英家教网 > 高中数学 > 题目详情
13.已知f(x)=$\left\{\begin{array}{l}\frac{1}{x},x<1\\{x^2}-1,x≥1\end{array}$,则$f({f({\frac{1}{3}})})$=8.

分析 先求出f($\frac{1}{3}$)=$\frac{1}{\frac{1}{3}}$=3,从而$f({f({\frac{1}{3}})})$=f(3),由此能求出结果.

解答 解:f(x)=$\left\{\begin{array}{l}\frac{1}{x},x<1\\{x^2}-1,x≥1\end{array}$,
∴f($\frac{1}{3}$)=$\frac{1}{\frac{1}{3}}$=3,
$f({f({\frac{1}{3}})})$=f(3)=32-1=8.
故答案为:8.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数y=x2-2x-m在[0,1]上的最大值与最小值的和为-3,则函数y=-x2+mx在[0,1]上的最小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某班级共49人,在必修1的学分考试中,有7人没通过,若用A表示参加补考这一事件,则下列关于事件A的说法正确的是(  )
A.概率为$\frac{1}{7}$B.频率为$\frac{1}{7}$C.频率为7D.概率接近$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知acosB=bcosA,边BC上的中线长为4,则△ABC面积的最大值是(  )
A.9B.$\frac{28}{3}$C.$\frac{32}{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的前n项和为Sn,S3=6,S6=21
(1)求数列{an}的通项公式
(2)求数列{2nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点$(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{4})$在幂函数y=f(x)的图象上,则f(-2)=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{cos2θ}{sin(θ+\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则log${\;}_{\sqrt{2}}$(sinθ-cosθ)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\frac{{2-m•{2^x}}}{2^x}$,函数$g(x)={log_a}({x^2}+x+2)$(a>0且a≠1)在$[{-\frac{1}{3}\;,\;1}]$上的最大值为2,若对任意的x1∈[-1,2],存在x2∈[0,3],使得f(x1)≥g(x2),则实数m的取值范围是(  )
A.$({-∞\;,\;-\frac{2}{3}}]$B.$[{\frac{2}{3}\;,\;+∞})$C.$({-∞\;,\;-\frac{1}{2}}]$D.$({-∞\;,\;\frac{1}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$z=\frac{2i}{2-i}$(i为虚数单位)所对应的点位于复平面内(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案