【题目】如图,三棱柱中, , , .
(Ⅰ)证明: ;
(Ⅱ)若,在棱上是否存在点,使得二面角的大小为,若存在,求的长,若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】某单位计划在一水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来3年中,设表示流量超过120的年数,求的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市垃圾处理站每月的垃圾处理量最少为400吨,最多为600吨,月处理成本(元)与月垃圾处理量(吨)之间的函数关系可近似地表示为,且每处理一吨垃圾得到可利用的资源值为100元.
(1)该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?
(2)该站每月能否获利?如果获利,求出最大利润;如果不获利,则需要市财政补贴,至少补贴多少元才能使该站不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若,证明:函数在上单调递减;
(Ⅱ)是否存在实数,使得函数在内存在两个极值点?若存在,求实数的取值范围;若不存在,请说明理由. (参考数据: , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为常数, 为自然对数的底数.
(1)若在区间上的最大值为,求的值;
(2)当时,判断方程是否有实根?若无实根请说明理由,若有实根请给出根的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(Ⅰ)能否据此判断有97.5%的把握认为视觉和空军能力与性别有关?
(Ⅱ)经过多次测试后,甲每次解答一道几何题所用的时间在5—7分钟,乙每次解答一道几何题所用的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(Ⅲ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列及数学期望.
附表及公式
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】园林管理处拟在公园某区域规划建设一半径为米,圆心角为(弧度)的扇形观景水池,其中, 为扇形的圆心,同时紧贴水池周边(即: 和所对的圆弧)建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平方米400元,步道造价为每米1000元.
(1)若总费用恰好为24万元,则当和分别为多少时,可使得水池面积最大,并求出最大面积;
(2)若要求步道长为105米,则可设计出的水池最大面积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2-a)lnx++2ax.
(1)当a<0时,讨论f(x)的单调性;
(2)若对任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln 3)a-2ln 3>|f(x1)-f(x2)|成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com