精英家教网 > 高中数学 > 题目详情
已知曲线C:(5-m)x2+(m-2)y2=8(m∈R)
(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.
【答案】分析:(1)原曲线方程,化为标准方程,利用曲线C是焦点在x轴点上的椭圆可得不等式组,即可求得m的取值范围;
(2)由已知直线代入椭圆方程化简得:(2k2+1)x2+16kx+24=0,△=32(2k2-3),解得:,设N(xN,kxN+4),M(xM,kxM+4),G(xG,1),MB方程为:,则,从而可得=(xN,kxN+2),欲证A,G,N三点共线,只需证共线,利用韦达定理,可以证明.
解答:(1)解:原曲线方程可化简得:
由题意,曲线C是焦点在x轴点上的椭圆可得:,解得:
(2)证明:由已知直线代入椭圆方程化简得:(2k2+1)x2+16kx+24=0,△=32(2k2-3)>0,解得:
由韦达定理得:①,,②
设N(xN,kxN+4),M(xM,kxM+4),G(xG,1),MB方程为:,则
=(xN,kxN+2),
欲证A,G,N三点共线,只需证共线
成立,化简得:(3k+k)xMxN=-6(xM+xN
将①②代入可得等式成立,则A,G,N三点共线得证.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三点共线,解题的关键是直线与椭圆方程联立,利用韦达定理进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京)已知曲线C:(5-m)x2+(m-2)y2=8(m∈R)
(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R),O为坐标原点.
(Ⅰ)若曲线C是焦点在x轴点上的椭圆且离心率e>
2
2
,求m的取值范围;
(Ⅱ)设m=4,直线l过点(0,1)且与曲线C交于不同的两点A、B,求当△ABO的面积取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R),O为坐标原点.
(Ⅰ)若曲线C是焦点在x轴点上的椭圆且离心率e>
2
2
,求m的取值范围;
(Ⅱ)设m=4,直线l过点(0,1)且与曲线C交于不同的两点A、B,求当△ABO的面积取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R)。
(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G,求证:A,G,N三点共线。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省淮北一中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R),O为坐标原点.
(Ⅰ)若曲线C是焦点在x轴点上的椭圆且离心率,求m的取值范围;
(Ⅱ)设m=4,直线l过点(0,1)且与曲线C交于不同的两点A、B,求当△ABO的面积取得最大值时直线l的方程.

查看答案和解析>>

同步练习册答案