精英家教网 > 高中数学 > 题目详情

【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在范围内(单位:毫米,以下同),按规定直径在内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:

(1)根据以上统计数据完成下面列联表,并回答是否有以上的把握认为“桔柚直径与所在基地有关”?

(2)求优质品率较高的基地的500个桔柚直径的样本平均数 (同一组数据用该区间的中点值作代表);

(3)记甲基地直径在范围内的五个桔柚分别为,现从中任取二个,求含桔柚的概率.

附: .

【答案】(1) 有95%的把握认为:“桔柚直径与所在基地有关;(2)80;(3) .

【解析】试题分析:(1)先写出列联表,然后根据公式代入数值求解对照表格下结论即可;(2)平均数计算公式为: ;(3)根据古典概型的概率求法将基本时间一一列出,再得出符合条件的基本事件,求比值即可得概率

解析:

(Ⅰ)由以上统计数据填写列联表如下:

甲基地

乙基地

合计

优质品

420

390

810

非优质品

80

110

190

合计

500

500

1000

所以,有95%的把握认为:“桔柚直径与所在基地有关”.

(Ⅱ)甲基地桔柚的优质品率为,乙基地桔柚的优质品率为

所以,甲基地桔柚的优质品率较高,

甲基地的500个桔柚直径的样本平均数

(Ⅲ)依题意:记“从甲基地直径在的五个桔柚A,B,C,D,E中任取二个,含桔柚A”为事件N.

实验包含的所有基本事件:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),

(B,E),(C, D),(C,E),(D,E)共10种.

事件N包含的结果有:(A, B),(A, C),(A,D),(A,E)共4种.

所求事件的概率为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 是棱的中点,且.

(Ⅰ)求证: 平面

(Ⅱ)若为棱上一点,满足,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面半径为,母线长为的圆柱的轴截面是四边形,线段上的两动点 满足.点在底面圆上,且 为线段的中点.

(Ⅰ)求证: 平面

(Ⅱ)四棱锥的体积是否为定值,若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知面垂直于圆柱底面, 为底面直径, 是底面圆周上异于的一点, .求证:

(1)平面平面

(2)求几何体的最大体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )

(参考数据:

A. 12 B. 24 C. 48 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过点的直线交抛物线位于第一象限)两点.

(1)若直线的斜率为,过点分别作直线的垂线,垂足分别为,求四边形的面积;

(2)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量分布在内,且销售量的分布频率满足:

(1)求的值并估计销售量的平均数;

(2)若销售量大于等于80,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取6天,再从这6天中随机抽取3天进行统计,求这3天不都来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,常数

1)求函数在区间上的零点个数;

2)函数的导数,是否存在无数个,使得为函数的极大值点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点的坐标为,直线的参数方程为为参数).以坐标原点为极点,以轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆极坐标方程为.

(Ⅰ)当时,求直线的普通方程和圆的直角坐标方程;

(Ⅱ)直线与圆的交点为,证明:是与无关的定值.

查看答案和解析>>

同步练习册答案