精英家教网 > 高中数学 > 题目详情
18.已知集合A={x∈Z|x≥2},B={x|(x-1)(x-3)<0},则A∩B=(  )
A.B.{2}C.{2,3}D.{x|2≤x<3}

分析 化简集合B,根据交集的定义写出A∩B即可.

解答 解:集合A={x∈Z|x≥2},
B={x|(x-1)(x-3)<0}={x|1<x<3},
则A∩B={2}.
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设n∈N*,n≥3,k∈N*
(1)求值:
①kCnk-nCn-1k-1
②k2Cnk-n(n-1)Cn-2k-2-nCn-1k-1(k≥2);
(2)化简:12Cn0+22Cn1+32Cn2+…+(k+1)2Cnk+…+(n+1)2Cnn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“远望嵬嵬塔七层,红光点点倍加增,共灯三百八十一,请问尖头几碗灯?”源自明代数学家吴敬所著的《九章詳註比纇算法大全》,通过计算得到的答案是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如上图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,则直线D1E与A1D所成角的大小是90°,若D1E⊥EC,则直线A1D与平面D1DE所成的角为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知全集U={1,2,3,4,5,6,7},集合A={1,2,3},B={2,3,4},则A∩B={2,3},∁UA={4,5,6,7}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点P(2,1)的直线l与函数f(x)=$\frac{2x+3}{2x-4}$的图象交于A,B两点,O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OP}+\overrightarrow{OB}•\overrightarrow{OP}$=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点F($\sqrt{6},0$),过点F作平行于y轴的直线截椭圆C所得的弦长为$\sqrt{2}$.
(1)求椭圆的标准方程;
(2)过点(1,0)的直线l交椭圆C于P,Q两点,N点在直线x=-1上,若△NPQ是等边三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$过点A(0,$\sqrt{2}$),离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程;
(2)过点(1,0)的直线l交椭圆C于P,Q两点,N是直线x=1上的一点,若△NPQ是等边三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示的多面体中,面ABCD是边长为2的正方形,平面PDCQ⊥平面ABCD,PD⊥DC,E,F,G分别为棱BC,AD,PA的中点.
(Ⅰ)求证:EG∥平面PDCQ;
(Ⅱ)已知二面角P-BF-C的余弦值为$\frac{\sqrt{6}}{6}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案