精英家教网 > 高中数学 > 题目详情
17.抛物线$\frac{1}{4}$y=x2的焦点坐标为(  )
A.(1,0)B.(2,0)C.(0,$\frac{1}{8}$)D.(0,$\frac{1}{16}$)

分析 根据题意,由抛物线的方程分析可得该抛物线的焦点在y轴正半轴上,且2p=$\frac{1}{4}$,由坐标公式计算可得答案.

解答 解:抛物线的方程为:$\frac{1}{4}$y=x2,变形可得x2=$\frac{1}{4}$y,
其焦点在y轴正半轴上,且2p=$\frac{1}{4}$,
则其焦点坐标为(0,$\frac{1}{16}$),
故选:D.

点评 本题考查抛物线的几何性质,要注意所给的抛物线方程是不是标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$=(2,-1,2),$\overrightarrow{b}$=(-1,3,-3),$\overrightarrow{c}$=(13,λ,3),若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,则λ的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a$=(cos($\frac{π}{2}$-x),sin($\frac{π}{2}$+x)),$\overrightarrow b$=(sin($\frac{π}{2}$+x),sinx),若x=-$\frac{π}{12}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,O是坐标原点,三个正方形OABC、BDEF、EGHI的顶点中,O、A、C、D、F、G、I七个点都在抛物线y2=2px(p>0)上,另外,B、E、H三个点都在x轴上,则这三个正方形的面积之比(  )
A.1:2:3B.1:4:9C.2:3:4D.4:9:16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax+b(a>0,a≠1)的图象过点(0,-3),(2,0).
(1)求a与b的值;
(2)求x∈[-2,4]时,f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的偶函数f(x)满足f(2-x)=f(x),且在[-3,-2]上是减函数,α,β是锐角三角形的两个内角,下列不等式正确的是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(cosα)<f(cosβ)D.f(sinα)>f(sinβ)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x∈R,mx2+1<0,命题q:?x∈R,x2+mx+1>0,若p∧q为真命题,则实数m的取值范围是(  )
A.(-∞,-2)B.[-2,0)C.(-2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆E经过点A(2,3),对称轴为坐标轴,离心率$e=\frac{1}{2}$,焦点F1、F2在x轴上,过左焦点F1 与A 做直线交椭圆E于B.
(1)求椭圆E的方程;
(2)求△ABF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{2{e}^{x}}{{e}^{x}+1}$,在F(x)=f(x)+1和G(x)=f(x)-1中,G(x)为奇函数,若f(b)=$\frac{3}{2}$,则f(-b)=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案