精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,判断函数的单调性;

2)若恒成立,求a的取值范围;

3)已知,证明

【答案】1在区间单调递增,单调递减 2 3)证明见解析

【解析】

1)当时,,分析出的正负,从而得的单调区间;

2)由已知分离变量得恒成立.设,则,对 求导,分析出的正负,从而得的单调区间和最值,可得a的取值范围;

3)欲证,两边取对数,转化为,由(2)可知的单调性,可得证.

由题意可知,函数的定义域为:

1)当时,

,则;若,则

所以函数在区间单调递增,单调递减.

2)若恒成立,则恒成立.

又因为,所以分离变量得恒成立.

,则,所以

时,;当时,

即函数上单调递增,在上单调递减.

时,函数取最大值,,所以.

3)欲证,两边取对数,可得

由(2)可知上单调递增,且所以,命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是曲线上两点,两点的横坐标之和为4,直线的斜率为2.

1)求曲线的方程;

2)设是曲线上一点,曲线点处的切线与直线平行,且,试求三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=|2x3|+|x+2|

1)求不等式fx≤5的解集;

2)若关于x的不等式fxa|x|在区间[12]上恒成立,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数,aR),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ2cosθ

1)求直线l的普通方程及曲线C的直角坐标方程;

2)若直线l过点P11)且与曲线C交于AB两点,求|PA|+|PB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,且满足.

(1)求角的大小;

(2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,沿翻折到的位置,使平面平面.

(1)求证: 平面

(2)若在线段上有一点满足,且二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的左顶点为A,且椭圆E经过与坐标轴不垂直的直线l与椭圆E交于CD两点,且直线AC和直线AD的斜率之积为.

I)求椭圆E的标准方程;

)求证:直线l过定点.

查看答案和解析>>

同步练习册答案