【题目】已知函数.
(1)当时,判断函数的单调性;
(2)若恒成立,求a的取值范围;
(3)已知,证明.
【答案】(1)在区间单调递增,单调递减 (2) (3)证明见解析
【解析】
(1)当时,,分析出的正负,从而得的单调区间;
(2)由已知分离变量得恒成立.设,则,对 求导,分析出的正负,从而得的单调区间和最值,可得a的取值范围;
(3)欲证,两边取对数,转化为,由(2)可知的单调性,可得证.
由题意可知,函数的定义域为:且,
(1)当时,,
若,则;若,则,
所以函数在区间单调递增,单调递减.
(2)若恒成立,则恒成立.
又因为,所以分离变量得恒成立.
设,则,所以.
当时,;当时,,
即函数在上单调递增,在上单调递减.
当时,函数取最大值,,所以.
(3)欲证,两边取对数,可得,
由(2)可知在上单调递增,且所以,命题得证.
科目:高中数学 来源: 题型:
【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:
维修次数 | 0 | 1 | 2 | 3 |
台数 | 5 | 10 | 20 | 15 |
以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。
(1)求X的分布列;
(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是曲线上两点,两点的横坐标之和为4,直线的斜率为2.
(1)求曲线的方程;
(2)设是曲线上一点,曲线在点处的切线与直线平行,且,试求三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x﹣3|+|x+2|
(1)求不等式f(x)≤5的解集;
(2)若关于x的不等式f(x)≤a﹣|x|在区间[﹣1,2]上恒成立,求实数a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ
(1)求直线l的普通方程及曲线C的直角坐标方程;
(2)若直线l过点P(1,1)且与曲线C交于AB两点,求|PA|+|PB|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是(为参数).
(1)求直线和曲线的普通方程;
(2)设直线和曲线交于两点,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为的椭圆的左顶点为A,且椭圆E经过与坐标轴不垂直的直线l与椭圆E交于C,D两点,且直线AC和直线AD的斜率之积为.
(I)求椭圆E的标准方程;
(Ⅱ)求证:直线l过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com