【题目】函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A.
(1) 求点A的坐标;
(2) 若点A在直线mx+ny+1=0上,其中m,n都是正数,求的最小值.
【答案】(1)定点A的坐标是(-2,-1);(2)8.
【解析】试题分析:(1)根据对数函数的性质可求出A的坐标,
(2)将出A的坐标代入直线方程可得m、n的关系,再利用1的代换结合均值不等式求解即可.
试题解析:
(1) ∵ 仅当x=-2时,函数y=loga(x+3)-1(a>0,a≠1)的函数值与a无关,且此时y=-1,
∴ 定点A的坐标是(-2,-1).
(2) 将点A(-2,-1)的坐标代入mx+ny+1=0,
得(-2)·m+(-1)·n+1=0,2m+n=1,
∵ m,n>0,∴+= (2m+n)=4++≥4+2=8.
等号当且仅当=,即m=,n=时成立.
故当m=,n=时,+取最小值为8.
科目:高中数学 来源: 题型:
【题目】【2017届江苏如东高级中学等四校高三12月联考】已知数列满足,,且对任意,都有.
(1)求,;
(2)设().
①求数列的通项公式;
②设数列的前项和,是否存在正整数,,且,使得,,成等比数列?若存在,求出,的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如下表所示:
积极参加班级工作 | 不积极参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性不高 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?
(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(3)学生的学习积极性与对待班极工作的态度是否有关系?请说明理由.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0.
(1)求证:f(x)是奇函数;
(2)若f(1)=,试求f(x)在区间[-2,6]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为 (a为常数),如图所示.根据图中提供的信息,回答下列问题:
(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为_________;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过_________小时后,学生才能回到教室.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量
(1)将利润表示为月产量的函数
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大家知道, 莫言是中国首位获得诺贝尔奖的文学家, 国人欢欣鼓舞.某高校文学社从男女生中各抽取名同学调查对莫言作品的了解程度, 结果如下:
阅读过莫言的作品数( 篇) | |||||
男生 | |||||
女生 |
(1)试估计该校学生阅读莫言作品超过篇的概率;
(2)对莫言作品阅读超过篇的则称为“对莫言作品非常了解” , 否则为“ 一般了解” .根据题意完成下表, 并判断能否在犯错误的概率不超过的前提下, 认为对莫言作品非常了解与性别有关?
非常了解 | 一般了解 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:,其中
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com