精英家教网 > 高中数学 > 题目详情
14.曲线y=2x2-x在点(1,1)处的切线方程为(  )
A.x-y+2=0B.3x-y+2=0C.x-3y-2=0D.3x-y-2=0

分析 欲求曲线y=2x2-x在点(1,1)处的切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

解答 解:∵y=f(x)=2x2-x,
∴f'(x)=4x-1,当x=1时,f'(1)=3得切线的斜率为3,所以k=3;
所以曲线在点(1,1)处的切线方程为:
y-1=3(x-1),即3x-y-2=0.
故选D.

点评 本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.定义域在R上的函数f(x)满足f(x+2)f(x)=1,当x∈[-1,1)时,f(x)=log2(4-x),则f(2016)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设i为虚数单位,复数$\frac{a+2i}{1+i}$为纯虚数,则实数a的值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别为三个内角A,B,C的对边,若a=2,b=1,B=29°,则此三角形解的情况是(  )
A.无解B.有一解C.有两解D.有无数解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知圆M:(x+1)2+y2=$\frac{49}{4}$的圆心为M,圆N:(x-1)2+y2=$\frac{1}{4}$的圆心为N,一动圆C与圆M内切,与圆N外切.
(Ⅰ)求动圆C的轨迹方程;
(Ⅱ)过点(1,0)的直线l与椭圆C交于A,B两点,若$\overrightarrow{OA}•\overrightarrow{OB}$=-2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ex(sinx-cosx)(0≤x≤2016π),则函数f(x)的各极大值之和为(  )
A.$\frac{{{e^π}(1-{e^{2017π}})}}{{1-{e^{2π}}}}$B.$\frac{{{e^π}(1-{e^{1009π}})}}{{1-{e^π}}}$
C.$\frac{{{e^π}(1-{e^{1008π}})}}{{1-{e^{2π}}}}$D.$\frac{{{e^π}(1-{e^{2016π}})}}{{1-{e^{2π}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知圆M:(x+1)2+y2=$\frac{49}{4}$的圆心为M,圆N:(x-1)2+y2=$\frac{1}{4}$的圆心为N,一动圆与圆M内切,与圆N外切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)过点(1,0)的直线l与曲线P交于A,B两点,若$\overrightarrow{OA}•\overrightarrow{OB}$=-2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知α,β∈(0,π),且tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$,则2α-β的值是(  )
A.-$\frac{π}{4}$B.-$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知y=f(x)在定义域R上为减函数,且f(1-a)<f(2a-5),则a的取值范围是(-∞,2).

查看答案和解析>>

同步练习册答案