精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,在区间(0,+∞)上单调递增的是(
A.y=
B.y=1﹣x
C.y=x2﹣x
D.y=1﹣x2

【答案】A
【解析】解:函数y= 的导函数y′= ,在区间(0,+∞)上,y′>0恒成立,故函数在区间(0,+∞)上单调递增;
函数y=1﹣x的导函数y′=﹣1,在区间(0,+∞)上,y′<0恒成立,故函数在区间(0,+∞)上单调递减;
函数y=x2﹣x的导函数y′=2x﹣1,在区间(0, )上,y′<0恒成立,故函数在区间(0,+∞)上不单调递增;
函数y=1﹣x2的导函数y′=﹣2x,在区间(0,+∞)上,y′<0恒成立,故函数在区间(0,+∞)上单调递减;
故选A.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x|,g(x)=lg(ax2﹣4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是(  )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是二次函数,顶点为(﹣1,﹣4),且与x轴的交点为(1,0).
(1)求出f(x)的解析式;
(2)求y=f(x)在区间[﹣2,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017衡阳第二次联考已知四棱锥中,底面为矩形, 底面 上一点, 的中点.

(1)在图中作出平面的交点,并指出点所在位置(不要求给出理由);

(2)求平面将四棱锥分成上下两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).
(1)若x∈[0,m],证明:f(x)≤
(2)求|f(x)|在[﹣1,1]上的最大值g(m).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:

月份

1月份

2月份

3月份

4月份

5月份

6月份

收入x

12.3

14.5

15.0

17.0

19.8

20.6

支出Y

5.63

5.75

5.82

5.89

6.11

6.18

根据统计资料,则(  )
A.月收入的中位数是15,x与y有正线性相关关系
B.月收入的中位数是17,x与y有负线性相关关系
C.月收入的中位数是16,x与y有正线性相关关系
D.月收入的中位数是16,x与y有负线性相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:

转速x(转/秒)

8

10

12

14

16

每小时生产有缺点的零件数y(件)

5

7

8

9

11

(1)如果y对x有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有10个,那么机器的运转速度应控制在设么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据是上海普通职工n个人的年收入,设n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入 , 则这n+1个数据中,下列说法正确的是 ( )
A.年收入平均数大大增加,中位数一定变大,方差可能不变
B.年收入平均数大大增加,中位数可能不变,方差变大
C.年收入平均数大大增加,中位数可能不变,方差也不变
D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩(成绩为整数,满分为100),其中一个数字被污损,则乙的平均成绩不低于甲的平均成绩的概率为(

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案