精英家教网 > 高中数学 > 题目详情

【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示。该同学为这个开学季购进了盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润。

(1)求市场需求量在[100,120]的概率;

(2)根据直方图估计这个开学季内市场需求量的中位数;

(3)将表示为的函数,并根据直方图估计利润不少于元的概率。

【答案】(1)0.1(2)(3)0.9

【解析】

试题分析:(1)应用众数和平均数的定义计算.2)由于市场需求量有可能大于160或是小于160,要分两种情形进行讨论.3)经计算利润要大于4800,则需求量要在120以上,考虑到需求量小于120的概率是0.1,所以大于120的概率就是0.9.

试题解析:(1)由频率直方图得:最大需求量为的频率

这个开学季内市场需求量的众数估计值是

需求量为的频率

需求量为的频率

需求量为的频率

需求量为的频率

需求量为的频率

则平均数……………………5分)

2)因为每售出盒该产品获利润元,未售出的产品,每盒亏损元,

所以当时,………………………………7分)

时,…………………………9分)

所以

3)因为利润不少于元所以,解得,解得

所以由(1)知利润不少于元的概率……………12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次至少击中3次的概率:先由计算器算出09之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了如下20组随机数:

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

据此估计,该射击运动员射击4次至少击中3次的概率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0, ]
(1)求C的参数方程;
(2)设点D在半圆C上,半圆C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线上一点, 分别是双曲线的左、右顶点,直线的斜率之积为.

(1)求双曲线的离心率;

(2)过双曲线的右焦点且斜率为的直线交双曲线于两点, 为坐标原点, 为双曲线上一点,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-1:几何证明选讲]
如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心, OA为半径作圆.

(1)证明:直线A与⊙O相切;
(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)求函数的定义域

(2)若函数的最大值是2,求的值

(3)求使成立的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,运行相应的程序,输出的结果为(

A.﹣2
B.
C.﹣1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为“常喝”,体重超过为“肥胖”.

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部人中随机抽取人,抽到肥胖的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;

(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是

查看答案和解析>>

同步练习册答案