精英家教网 > 高中数学 > 题目详情

函数f(x)=ax3+3x2+3x(a≠0).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(1,2)是增函数,求a的取值范围.

(1)a≥1时,在(-,+)是增函数;0<a<1时, f(x)在(-,x2),(x1,+)上是增函数;f(x)在(x2,x1)上是减函数;(2)

解析试题分析:(1)首先求出函数的导数,然后求出是的解集即可.
(2)分类讨论在区间(1,2)上使成立的条件,并求出参数a的取值范围即可
试题解析:(1)的判别式△=36(1-a).
(i)若a≥1,则,且当且仅当a=1,x=-1,故此时f(x)在R上是增函数.
(ii)由于a≠0,故当a<1时,有两个根:
若0<a<1,则当x∈(-,x2)或x∈(x1,+)时,,故f(x)在(-,x2),(x1,+)上是增函数;
当x∈(x2,x1)时,,故f(x)在(x2,x1)上是减函数;
(2)当a>0,x>0时, ,所以当a>0时,f(x)在区间(1,2)是增函数.
若a<0时,f(x)在区间(1,2)是增函数当且仅当,解得.
综上,a的取值范围是.
考点:1.函数的导数;2.导数性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)求函数的极值;(2)若恒成立,求实数的值;
(3)设有两个极值点(),求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中e是无理数且e="2.71828" ,.
(1)若,求的单调区间与极值;
(2)求证:在(1)的条件下,
(3)是否存在实数a,使的最小值是?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1当 时, 与)在定义域上单调性相反,求的 的最小值。
(2)当时,求证:存在,使的三个不同的实数解,且对任意都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若处有极值,求a;
(2)若上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数。
(Ⅰ)设是函数的导函数,求函数在区间上的最小值;
(Ⅱ)若,函数在区间内有零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中,且曲线在点处的切线垂直于.
(1)求的值;
(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数的导数:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点P(0,2),且在点M(-1,)处的切线方程
(1)求函数的解析式;   
(2)求函数的图像有三个交点,求的取值范围。

查看答案和解析>>

同步练习册答案