精英家教网 > 高中数学 > 题目详情
已知等差数列{an}满足:a5=9,a2+a6=14.
(1)求{an}的通项公式;
(2)若bn=
1anan+1
,求数列{bn}的前n项和Sn
分析:(1)由等差数列的条件求出首项和公差,即可求{an}的通项公式;
(2)求出数列{bn}的通项公式,然后利用裂项法求,求数列{bn}的前n项和Sn
解答:解:(1)由a5=9,a2+a6=14.
a5=a1+4d=9
2a1+6d=14
,解得
a1=1
d=2

∴an=1+(n-1)×2=2n-1.
(2)∵bn=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

sn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
[1-
1
2n+1
]
=
1
2
2n
2n+1
=
n
2n+1
点评:本题主要考查等差数列的通项公式和数列的求和问题,利用裂项法是解决本题的关键,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案