精英家教网 > 高中数学 > 题目详情
(本题满分15分) 已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线的方程;
(2)已知动直线过点,交抛物线两点.
若直线的斜率为1,求的长;
是否存在垂直于轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,说明理由.
解:(1)由题意,可设抛物线方程为.         …………1分
,得.                               …………2分
抛物线的焦点为,.                             …………3分
抛物线D的方程为.                                …………4分
(2)设,.                                   …………5分
直线的方程为:,              …………6分
联立,整理得:  …………7分
=.…………9分
(ⅱ) 设存在直线满足题意,则圆心,过作直线的垂线,垂足为,设直线与圆的一个交点为.可得:          …………10分
                              …………11分
=
=
==                    …………13分
时, ,此时直线被以为直径的圆所截得的弦长恒为定值.
…………14分
因此存在直线满足题意                       …………15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题10分)
分别为椭圆的左、右两个焦点.(1)若椭圆上的点两点的距离之和等于4,求椭圆的方程和焦点坐标;(2)设点P是(1)中所得椭圆上的动点,

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个圆柱形容器里装有水,放在水平地面上,现将该容器倾斜,这时水面是一个椭圆面(如图),当圆柱的母线与地面所成角时,椭圆的离心率是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆的左右焦点,若在其右准线上存在点,使为等腰三角形,则椭圆的离心率的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线-=1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的左右焦点,上一点,,则的离心率的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

..(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分.
已知椭圆上有一个顶点到两个焦点之间的距离分别为
(1)求椭圆的方程;
(2)如果直线与椭圆相交于,若,证明直线与直线的交点必在一条确定的双曲线上;
(3)过点作直线(与轴不垂直)与椭圆交于两点,与轴交于点,若,证明:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若P是以F1F2为焦点的椭圆=1上一点,则DPF1F2的周长等于_________。

查看答案和解析>>

同步练习册答案