精英家教网 > 高中数学 > 题目详情

【题目】已知曲线在点处的切线斜率为0.

(1)讨论函数的单调性;

(2)在区间上没有零点,求实数的取值范围.

【答案】(Ⅰ)单调递增区间是,单调递减区间是.(Ⅱ)

【解析】试题分析:(1)由的定义域为,得,因为,所以,代入,令,即可求解函数的单调区间;

(2)由函数得可得在上是减函数,在上为增函数,由在区间上没有零点,得上恒成立,根据,得,设,求解函数的最值,即可得到结论。

试题解析:

解:(Ⅰ) 的定义域为

因为,所以

,得,令,得

故函数的单调递增区间是,单调递减区间是

(Ⅱ),由,得

,所以上是减函数,在上为增函数.

因为在区间上没有零点,所以上恒成立,

,得,令,则

时, ,所以上单调递减;

所以当时, ,故,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.

(1)证明:a>0;

(2)若z=a+2b,求z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网络购物已经成为一种时尚,电商们为了提升知名度,加大了在媒体上的广告投入.经统计,近五年某电商在媒体上的广告投入费用x(亿元)与当年度该电商的销售收入y(亿元)的数据如下表:):

年份

2012年

2013年

2014

2015

2016

广告投入x

0.8

0.9

1

1.1

1.2

销售收入y

16

23

25

26

30

(1)求y关于x的回归方程; (2)2017年度该电商准备投入广告费1.5亿元,

利用(1)中的回归方程,预测该电商2017年的销售收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

,选用数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作抛物线的两条切线, 切点分别为, .

(1) 证明: 为定值;

(2) 记△的外接圆的圆心为点, 是抛物线的焦点,任意实数, 试判断以为直径的圆是否恒过点? 并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4;坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线

(Ⅰ)求直线的普通方程和曲线的直角坐标方程.

(Ⅱ)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4,且kR)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k·f(x),其中f(x)=若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.

(1)若只投放一次k个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k的值;

(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求不等式的解集;

2)若,且,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2sin(x-)-,现将f(x)的图象向左平移个单位长度,再向上平移个单位长度,得到函数g(x)的图象.

(1)求f()+g()的值;

(2)若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=4,且当x=B时,g(x)取得最大值,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届江西省南昌市高三第一次模拟考试数学(理)】已知函数,是自然对数的底数).

(1)若上的单调递增函数,求实数的取值范围;

(2)当时,证明:函数有最小值,并求函数最小值的取值范围.

查看答案和解析>>

同步练习册答案