精英家教网 > 高中数学 > 题目详情

【题目】在棱长为1的正方体ABCD﹣A1B1C1D1中,AC∩BD=O,E是线段B1C(含端点)上的一动点,则 ①OE⊥BD1
②OE∥面A1C1D;
③三棱锥A1﹣BDE的体积为定值;
④OE与A1C1所成的最大角为90°.
上述命题中正确的个数是(

A.1
B.2
C.3
D.4

【答案】D
【解析】解:①利用BD1⊥平面AB1C,可得OE⊥BD1 , 正确;②利用平面AB1C∥面A1C1D,可得OE∥面A1C1D,正确;③三棱锥A1﹣BDE的体积=三棱锥E﹣A1BD的体积,底面为定值,E到平面的距离A1BD为定值,∴三棱锥A1﹣BDE的体积为定值,正确;④E在B1处O,E与A1C1所成的最大角为90°,正确. 故选D.
【考点精析】根据题目的已知条件,利用棱柱的结构特征的相关知识可以得到问题的答案,需要掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n(n∈N*)项和为Sn , a3=3,且λSn=anan+1 , 在等比数列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn , 且 ,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=BC=a,点P在边AB上,设 (λ>0),过点P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE将△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF将△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求证:B′C∥平面A′PE;
(2)是否存在正实数λ,使得二面角C﹣A′B′﹣P的大小为60°?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若曲线f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分别存在点A、B,使得△OAB是以原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,则实数a的取值范围是(
A.(e,e2
B.(e,
C.(1,e2
D.[1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知三点O(0,0),A(2, ),B(2 ).
(1)求经过O,A,B的圆C1的极坐标方程;
(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为 (θ是参数),若圆C1与圆C2外切,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=8cos(θ﹣ ).
(1)求曲线C2的直角坐标方程,并指出其表示何种曲线;
(2)若曲线C1与曲线C2交于A,B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a<0,曲线f(x)=2ax2+bx+c与曲线g(x)=x2+alnx在公共点(1,f(1))处的切线相同. (Ⅰ)试求c﹣a的值;
(Ⅱ)若f(x)≤g(x)+a+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x3+ax2+bx+c有极值点x1 , x2(x1>x2),f(x1)=x1 , 则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱 中,平面 侧面 ,且
(1)求证:
(2)若直线 与平面 所成角的大小为 ,求锐二面角 的大小.

查看答案和解析>>

同步练习册答案