精英家教网 > 高中数学 > 题目详情
18.函数f(x)为定义在R上的奇函数,且在(0,+∞)上是增函数,f(2)=0,则x[f(x)-f(-x)]<0的解集为(-2,0)∪(0,2).

分析 易判断f(x)在(-∞,0)上的单调性及f(x)图象所过特殊点,作出f(x)的草图,根据图象可解不等式.

解答 解:∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,
∴f(x)在(-∞,0)上也是增函数,
由f(2)=0,得f(-2)=-f(2)=0,
即f(-2)=0,
由f(-0)=-f(0),得f(0)=0,
作出f(x)的草图,如图所示:
由图象,得x[f(x)-f(-x)]<0?xf(x)<0
?$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$,
解得0<x<2或-2<x<0,
∴xf(x)<0的解集为:(-2,0)∪(0,2),
故答案为:(-2,0)∪(0,2)

点评 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{1}{{1+{x^2}}}$,
(1)利用函数单调性定义证明函数f(x)在(-∞,0]上是增函数;
(2)求函数$f(x)=\frac{1}{{1+{x^2}}}$在[-3,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}是等比数列,首项a1=1,公比q>0,其前n项和为Sn,且S1+a1,S3+a3,S2+a2成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于函数f(x)=$\frac{{{2^x}+a}}{{{2^x}-1}}$,
(1)求函数的定义域;       
(2)当a为何值时,f(x)为奇函数;
(3)用定义证明(2)中的函数在(0,+∞)上是单调递减的.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设F1、F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与椭圆C的另一个交点为N.若直线MN的斜率为$\frac{3}{4}$,则C的离心率等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=1,an+1=$\frac{1}{2{a}_{n}+1}$(n∈N*).
(1)证明:数列{|an-$\frac{1}{2}$|}为单调递减数列;
(2)记Sn为数列{|an+1-an|}的前n项和,证明:Sn<$\frac{5}{3}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow a=(-3,4,2),\overrightarrow b=(2,1,5)$
求(1)$\overrightarrow a+\overrightarrow b$
(2)$\overrightarrow a-\overrightarrow b$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=2+\frac{1}{a}-\frac{1}{{{a^2}x}}$,实数a≠0.
(1)设mn>0,判断函数f(x)在区间[m,n]上的单调性,并说明理由;
(2)设n>m>0且a>0时,f(x)的定义域和值域都是[m,n],求n-m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知k<0,则曲线$\frac{x^2}{9}+\frac{y^2}{4}=1$和$\frac{x^2}{9-k}+\frac{y^2}{4-k}=1$有相同的(  )
A.顶点B.焦点C.离心率D.长轴长

查看答案和解析>>

同步练习册答案