精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA= ,连接CE并延长交AD于F

(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.

【答案】
(1)解:∵在△DAB中,E为BD的中点,EA=EB=AB=1,

∴AE= BD,可得∠BAD= ,且∠ABE=∠AEB=

∵△DAB≌△DCB,∴△EAB≌△ECB,从而得到∠FED=∠BEC=∠AEB=

∴∠EDA=∠EAD= ,可得EF⊥AD,AF=FD

又∵△PAD中,PG=GD,∴FG是△PAD是的中位线,可得FG∥PA

∵PA⊥平面ABCD,∴FG⊥平面ABCD,

∵AD平面ABCD,∴FG⊥AD

又∵EF、FG是平面CFG内的相交直线,∴AD⊥平面CFG


(2)解:以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,可得

A(0,0,0),B(1,0,0),C( ,0),D(0, ,0),P(0,0,

=( ,0), =(﹣ ,﹣ ), =(﹣ ,0)

设平面BCP的法向量 =(1,y1,z1),则

解得y1=﹣ ,z1= ,可得 =(1,﹣ ),

设平面DCP的法向量 =(1,y2,z2),则

解得y2= ,z2=2,可得 =(1, ,2),

∴cos< >= = =

因此平面BCP与平面DCP的夹角的余弦值等于﹣cos< >=﹣


【解析】(1)利用直角三角形的判定得到∠BAD= ,且∠ABE=∠AEB= .由△DAB≌△DCB得到△EAB≌△ECB,从而得到∠FED=∠FEA= ,所以EF⊥AD且AF=FD,结合题意得到FG是△PAD是的中位线,可得FG∥PA,根据PA⊥平面ABCD得FG⊥平面ABCD,得到FG⊥AD,最后根据线面垂直的判定定理证出AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,得到A、B、C、D、P的坐标,从而得到 的坐标,利用垂直向量数量积为零的方法建立方程组,解出 =(1,﹣ )和 =(1, ,2)分别为平面BCP、平面DCP的法向量,利用空间向量的夹角公式算出 夹角的余弦,即可得到平面BCP与平面DCP的夹角的余弦值.
【考点精析】通过灵活运用直线与平面垂直的判定,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼的时间/分钟

总人数

20

36

44

50

40

10

将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

课外体育不达标

课外体育达标

合计

20

110

合计

(2)通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”性别有关?

参考公式,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是某港口水的深度(单位:)关于时间的函数,其中.下表是该港口某一天从时至时记录的时间与水深的关系:

t

0

3

6

9

12

15

18

21

24

y

5.0

7.5

5.0

2.5

5.0

7.5

5.0

2.5

5.0

经长期观察,函数的图像可以近似看成函数的图像.最能近似表示表中数据间对应关系的函数是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆M与定圆C:x2+y2+4x=0相外切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,若成等差数列,且三个内角也成等差数列,则的形状为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为 (其中为参数).现以坐标原点为极点轴的非负半轴为极轴建立极坐标标系,曲线的极坐标方程为.

(1)写出直线的普通方程和曲线的直角坐标方程;(2)求直线被曲线截得的线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于不重合的两个平面,给定下列条件:

①存在平面,使得都垂直于

②存在平面,使得都平行于

内有不共线的三点到的距离相等;

④存在异面直线,使得

其中,可以判定平行的条件有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,以O为圆心的圆与直线相切.

(1)求圆O的方程.

(2)直线与圆O交于AB两点,在圆O上是否存在一点M,使得四边形为菱形?若存在,求出此时直线l的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

同步练习册答案