精英家教网 > 高中数学 > 题目详情
2.阅读下面材料:
根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$
代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
类比上述推证方法,根据两角和与差的余弦公式,证明:
cosA-cosB=-2sin$\frac{A+B}{2}$sin$\frac{A-B}{2}$.

分析 通过两角和与差的余弦公式,令α+β=A,α-β=B有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$,即可证明结果.

解答 证明:因为cos(α+β)=cosαcosβ-sinαsinβ,------①
cos(α-β)=cosαcosβ+sinαsinβ②
①-②得cos(α+β)-cos(α-β)=-2sinαsinβ③…
令α+β=A,α-β=B有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$,
代入③得cosA-cosB=-2sin $\frac{A+B}{2}$sin$\frac{A-B}{2}$.

点评 本小题主要考查类比推理,考查两角和与差三角函数公式、二倍角公式、三角函数的恒等变换等基础知识,考查推理论证能力,运算求解能力,考查化归与转化思想等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.同时投掷3枚硬币,那么互为对立事件的是(  )
A.至少有一个正面和最多一个正面B.最多两个正面和至少两个正面
C.不多于一个正面和至少两个正面D.至少两个正面和恰有一个正面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知曲线C的极坐标方程为ρ=-2sinθ,则其直角坐标方程为x2+(y+1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某学校的组织结构图如下:

则保卫科的直接领导是副校长乙.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面A的图形的序号是(  )
A.①②B.②③C.①③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C的极坐标方程是ρ=2$\sqrt{2}$•sin(θ+$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(提示:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ$\overline{+}$ sinαsinβ
(1)求圆与直线的直角坐标方程.
(2)判断直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线C的左,右焦点分别为F1(-1,0),F2(1,0),抛物线y2=4x与双曲线C的一个交点为P,若($\overrightarrow{{F}_{2}P}$+$\overrightarrow{{F}_{2}{F}_{1}}$)•($\overrightarrow{{F}_{2}P}$-$\overrightarrow{{F}_{2}{F}_{1}}$)=0,则C的离心率为(  )
A.$\sqrt{2}$B.1+$\sqrt{2}$C.1+$\sqrt{3}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z满足1+i=(1-i)2z,则z的共轭复数在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆ρ=r与圆ρ=-2rsin(θ+$\frac{π}{4}$)(r>0)的公共弦所在直线的方程为(  )
A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-r
C.$\sqrt{2}$ρ(sin θ+cos θ)=rD.$\sqrt{2}$ρ(sin θ+cos θ)=-r

查看答案和解析>>

同步练习册答案