【题目】以下表格记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以表示.
甲组 | 9 | 9 | 11 | 11 |
乙组 | 8 | 9 | 10 |
(1)如果,求乙组同学植树棵数的平均数和方差;
(2)如果,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
科目:高中数学 来源: 题型:
【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别无关”
B. 有99%以上的把握认为“爱好该项运动与性别有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.
(1)求A;
(2)若a=,b=2,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图半圆的直径为4,为直径延长线上一点,且,为半圆周上任一点,以为边作等边(、、按顺时针方向排列)
(1)若等边边长为,,试写出关于的函数关系;
(2)问为多少时,四边形的面积最大?这个最大面积为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E、F分别为BC、AD的中点,点M在线段PD上.
(1)求证:EF⊥平面PAC;
(2)如果直线ME与平面PBC所成的角和直线ME与平
面ABCD所成的角相等,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象上的一个最低点为,周期为.
(1)求的解析式;
(2)将的图象上的所有点的横坐标伸长到原来的2倍(纵坐标不变),然后再将所得的图象沿轴向右平移个单位,得到函数的图象,写出函数的解析式;
(3)当时,求函数的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱台中,底面是菱形,,,平面.
(1)若点是的中点,求证://平面;
(2)棱BC上是否存在一点E,使得二面角的余弦值为?若存在,求线段CE的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校对甲、乙两个班级的同学进行了体能测验,成绩统计如下(每班50人):
(1)成绩不低于80分记为“优秀”.请填写下面的列联表,并判断是否有的把握认为“成绩优秀”与所在教学班级有关?
(2)从两个班级的成绩在的所有学生中任选2人,其中,甲班被选出的学生数记为,求的分布列与数学期望.
赋:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com