精英家教网 > 高中数学 > 题目详情
已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值是
 
分析:由题意得m>2,n>1,(m-2)(n-1)=4,再由基本不等式得 
(m-2)(n-1)
=2≤
m-2+n-1
2
=
m+n-3
2
,变形可得m+n的最小值.
解答:解:∵f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,m>2,n>1,
∴log2(m-2)+log2(2n-2)=3,log2(m-2)2(n-1)=3,(m-2)2(n-1)=8,
(m-2)(n-1)=4,∴
(m-2)(n-1)
=2≤
m-2+n-1
2
=
m+n-3
2
 
(当且仅当m-2=n-1=2时,取等号 ),∴m+n-3≥4,m+n≥7.
故答案为:7.
点评:本题考查对数的运算性质,基本不等式的应用.考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案