精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.

1)求直线的普通方程和曲线的直角坐标方程;

2)设是曲线上任意一点,直线与两坐标轴的交点分别为,求最大值.

【答案】1)直线的普通方程为;曲线的直角坐标方程为2

【解析】

1)利用加减消元可得的普通方程,结合,可得的直角坐标方程.

(2)根据(1)的条件,得到点,点坐标,以及使用曲线的参数方程,假设点坐标,结合辅助角公式,可得结果.

解:(1)由

.

故直线的普通方程为.

代入

故曲线的直角坐标方程

.

2)直线与坐标轴的交点

依次为,不妨设

曲线的直角坐标方程

化为标准方程是

由圆的参数方程,

可设点.

于是

所以

.

所以当,即时,

取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线交于两点,且的面积为16为坐标原点).

1)求的方程;

2)直线经过的焦点不与轴垂直,与交于两点,若线段的垂直平分线与轴交于点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日起新的个人所得税法开始实施,依据《中华人民共和国个人所得税法》可知纳税人实际取得工资、薪金(扣除专项、专项附加及依法确定的其他)所得不超过5000元(俗称起征点)的部分不征税,超出5000元部分为全月纳税所得额.新的税率表如下:

201911日后个人所得税税率表

全月应纳税所得额

税率(%

不超过3000元的部分

3

超过3000元至12000元的部分

10

超过12000元至25000元的部分

20

超过25000元至35000元的部分

25

个人所得税专项附加扣除是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息、住房租金和赡养老人等六项专项附加扣除.其中赡养老人一项指纳税人赡养60岁(含)以上父母及其他法定赡养人的赡养支出,可按照以下标准扣除:纳税人为独生子女的,按照每月2000元的标准定额扣除;纳税人为非独生子女的,由其与兄弟姐妹分摊每月2000元的扣除额度,每人分摊的额度不能超过每月1000.某纳税人为独生子,且仅符合规定中的赡养老人的条件,如果他在201910月份应缴纳个人所得税款为390元,那么他当月的工资、薪金税后所得是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在水平地面上的不同两点处栽有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点的轨迹可能是(

①直线 ②圆 ③椭圆 ④抛物线

A.①②B.①③C.①②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.

1)求直线的普通方程和曲线的直角坐标方程;

2)设是曲线上任意一点,直线与两坐标轴的交点分别为,求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)证明:当时,函数有三个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,判断函数的单调性并说明理由;

2)若,求证:关的不等式上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为常数,函数,给出以下结论:

(1)若,则存在唯一零点

(2)若,则

(3)若有两个极值点,则

其中正确结论的个数是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

同步练习册答案