【题目】已知椭圆的离心率为,点为椭圆上一点.
(1)求椭圆C的方程;
(2)已知两条互相垂直的直线,经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.
【答案】(1);(2)
【解析】
(1)由题意可得,解得进而得到椭圆的方程;(2)设出直线l1,l2的方程,直线和椭圆方程联立,运用韦达定理和弦长公式,分别求得|AB|,|MN|,再由四边形的面积公式,化简整理计算即可得到取值范围.
(1)由题意可得,解得a2=4,b2=3,c2=1
故椭圆C的方程为;
(2)当直线l1的方程为x=1时,此时直线l2与x轴重合,
此时|AB|=3,|MN|=4,
∴四边形AMBN面积为S|AB||MN|=6.
设过点F(1,0)作两条互相垂直的直线l1:x=ky+1,直线l2:xy+1,
由x=ky+1和椭圆1,可得(3k2+4)y2+6ky﹣9=0,
判别式显然大于0,y1+y2,y1y2,
则|AB|,
把上式中的k换为,可得|MN|
则有四边形AMBN面积为S|AB||MN|,>
令1+k2=t,则3+4k2=4t﹣1,3k2+4=3t+1,
则S,
∴t>1,
∴01,
∴y=﹣()2,在(0,)上单调递增,在(,1)上单调递减,
∴y∈(12,],
∴S∈[,6)
故四边形PMQN面积的取值范围是
科目:高中数学 来源: 题型:
【题目】已知函数的相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移个单位,所得的函数为奇函数.
(1)求的解析式;
(2)若关于的方程在区间上有两个不等实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】这是今年双十一的两道题目,第一题是双十一之前网上流传甚广的小明买卫衣问题,第二题是有关某老师的双十一战果.
(1)小明想在双十一买价值399的卫衣,已知付定金20元有订金三倍膨胀活动,但仅限当天0到2点,2点以后订金可抵用50元,但有付尾款前500名免定金活动,同时该店铺有399减20和299减10的优惠券(其使用门槛是订金尾款订金膨胀优惠金额大于等于优惠券),还有一种379减20和279减10的折扣券(其使用门槛是尾款膨胀优惠金额大于等于折扣券面额),优惠和折扣只能选一种,求小明最低多少钱能买到这件卫衣?如果你是小明,你会选择怎样购买?
(2)某老师在双十一前花1元,抢到了某商家满的一张优惠券,该商家没有订金膨胀活动,但该商家有多买多优惠活动:满3件9折,5件8折,10件及以上7折,同时可用淘宝的购物津贴(可跨店满减,店铺优惠后参加该活动,但运费不在其中),现已知该老师本单共花了元(1是买券钱,119.78是双十一付款,其中含运费6元).
请问:该老师本次购买的商品价值最低多少?最高多少?(按商家标示的淘宝价格计算,精确到元即可,已知该老师用了券)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是菱形,,为等边三角形,是线段上的一点,且平面.
(1)求证:为的中点;
(2)若为的中点,连接,,,,平面平面,,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,,,,,,到如图所示的频率分布直方图.
(1)求图中的值及样本的中位数与众数;
(2)若从竞赛成绩在与两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点也是椭圆的一个焦点,点在椭圆短轴上,且.
(1)求椭圆的方程;
(2)设为椭圆上的一个不在轴上的动点,为坐标原点,过椭圆的右焦点作的平行线,交曲线于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右顶点为,上顶点为,右焦点为.连接并延长与椭圆相交于点,且
(Ⅰ)求椭圆的方程;
(Ⅱ)设经过点的直线与椭圆相交于不同的两点,直线分别与直线相交于点,点.若的面积是的面积的2倍,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com