精英家教网 > 高中数学 > 题目详情
18.己知函数f(x)与它的导函数f'(x)满足x2f'(x)+xf(x)=lnx,且f(e)=$\frac{1}{e}$,则下列结论正确的是(  )
A.f(x)在区间(0,+∞)上是减函数B.f(x)在区间(0,+∞)上是增函数
C.f(x)在区间(0,+∞)上先增后减D.f(x)在区间(0,+∞)上是先减后增

分析 由题意知[xf(x)]′=$\frac{lnx}{x}$,从而由积分可知xf(x)=$\frac{1}{2}$(lnx)2+c,从而解得f(x)=$\frac{l{n}^{2}x}{2x}$+$\frac{1}{2x}$,从而再求导判断函数的单调性.

解答 解:∵x2f′(x)+xf(x)=lnx,
∴xf′(x)+f(x)=$\frac{lnx}{x}$,
∴[xf(x)]′=$\frac{lnx}{x}$,
∴xf(x)=$\frac{1}{2}$(lnx)2+c,
又∵f(e)=$\frac{1}{e}$,
∴e•$\frac{1}{e}$=$\frac{1}{2}$+c,
故c=$\frac{1}{2}$,
∴f(x)=$\frac{l{n}^{2}x}{2x}$+$\frac{1}{2x}$,
∴f′(x)=$\frac{2lnx•\frac{1}{x}•x-(l{n}^{2}x+1)}{2{x}^{2}}$=$\frac{-(lnx-1)^{2}}{2{x}^{2}}$≤0,
∴f(x)在区间(0,+∞)上是减函数,
故选A.

点评 本题考查了导数的综合应用及积分的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,且a1=1,4anan-1+Sn=Sn-1+an-1(n≥2,n∈N*).
(1)证明:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)若$\frac{{a}_{n}}{λ}$+$\frac{1}{{a}_{n+1}}$$≥\frac{1}{λ}$对任意整数n(n≥2)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知离心率为$\frac{\sqrt{3}}{3}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和直线l:$\sqrt{3}$x+2$\sqrt{2}$y+6=0,其中椭圆C经过点(1,$\frac{2\sqrt{3}}{3}$),点P是椭圆C上一动点,直线l与两坐标轴的交点分别为A,B.
(1)求与椭圆C相切平行于直线l的直线方程;
(2)求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.比较大小:(1)sin(-$\frac{π}{5}$)>sin(-$\frac{2π}{5}$);(2)cos$\frac{3π}{7}$>cos$\frac{5π}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\underset{lim}{n→∞}{a}_{n}$存在,且$\underset{lim}{n→∞}\frac{{a}_{n}+1}{{a}_{n}-1}$=3,则$\underset{lim}{n→∞}$an=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)在区间(0,+∞)上是单调递减的,试比较f(a2-a+1)与$f(\frac{3}{4})$的大小f(a2-a+1)$≤f(\frac{3}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用洛必达法则求下列极限:
(1)$\underset{lim}{x→0}$$\frac{1-cosx}{{x}^{2}}$
(2)$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}-2x}{x-sinx}$
(3)$\underset{lim}{x→{0}^{+}}\frac{lnsin3x}{lnsinx}$
(4)$\underset{lim}{x→0}(\frac{1}{x}-\frac{1}{{e}^{x}-1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.讨论函数y=loga|x-2|的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设数列{an}的前n项和为Sn,则下列命题中正确的是(1),(2),(3).(填写所有正确命题的编号)
(1)Sn=an2+bn(a,b∈R),则{an}为等差数列;(2)若Sn=1+(-1)n+1,则{an}是等比数列;(3){an}为等比数列,且$\underset{lim}{n→∞}$Sn=2012,则$\underset{lim}{n→∞}$an=0.

查看答案和解析>>

同步练习册答案