【题目】已知椭圆的中心在原点,对称轴为坐标轴,椭圆与直线相切于点.
(1)求椭圆的标准方程;
(2)若直线: 与椭圆相交于、两点(, 不是长轴端点),且以为直径的圆过椭圆在轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.
【答案】(1) ;(2)答案见解析.
【解析】试题分析:(1)利用点在椭圆上及相切关系布列方程组,即可解得椭圆的标准方程;
(2)联立方程易得: , ,以为直径的圆过椭圆在轴正半轴上的顶点,∴,即或,经检验得到结果.
试题解析:
法一(Ⅰ)由题意设椭圆的标准方程为(, 且)
∵在椭圆上,∴ ①
由得
∵椭圆与直线相切,∴,
即②
由①②知,
故所求椭圆方程为
法二:设椭圆为(, 且)则它在点处的切线为,它与表示同一直线,∴, ,∴,
故所求椭圆方程为.
(Ⅱ)设, ,联立
得
得
,
,
因为以为直径的圆过椭圆的上顶点
∴即
∴
即
即
即
∴或
当时,直线过定点与已知矛盾
当时,直线过定点满足
所以,直线过定点,定点坐标为
科目:高中数学 来源: 题型:
【题目】(2016·北京卷)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.
(1)求证:PD⊥平面PAB;
(2)求直线PB与平面PCD所成角的正弦值;
(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆.
(1)求圆心C的坐标及半径r的大小;
(2)已知不过原点的直线l与圆C相切,且在x轴、y轴上的截距相等,求直线l的方程;
(3)从圆外一点向圆引一条切线,切点为M,O为坐标原点,且,求点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】庙会是我国古老的传统民俗文化活动,又称“庙市”或 “节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:
甲说:“我或乙能中奖”; 乙说:“丁能中奖”;
丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.
游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于若数列满足则称这个数列为“数列”.
(Ⅰ)已知数列1, 是“数列”,求实数的取值范围;
(Ⅱ)是否存在首项为的等差数列为“数列”,且其前项和使得恒成立?若存在,求出的通项公式;若不存在,请说明理由;
(Ⅲ)已知各项均为正整数的等比数列是“数列”,数列不是“数列”,若试判断数列是否为“数列”,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com